Advertisement

Hidden Variables Simulating Quantum Contextuality Increasingly Violate the Holevo Bound

  • Adán Cabello
  • Joost J. Joosten
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6714)

Abstract

In this paper we approach some questions about quantum contextuality with tools from formal logic. In particular, we consider an experiment associated with the Peres-Mermin square. The language of all possible sequences of outcomes of the experiment is classified in the Chomsky hierarchy and seen to be a regular language.

We introduce a very abstract model of machine that simulates nature in a particular sense. A lower-bound on the number of memory states of such machines is proved if they were to simulate the experiment that corresponds to the Peres-Mermin square. Moreover, the proof of this lower bound is seen to scale to a certain generalization of the Peres-Mermin square. For this scaled experiment it is seen that the Holevo bound is violated and that the degree of violation increases uniformly.

Keywords

Formal Language Hide Variable Regular Language Memory State Finite State Automaton 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cabello, A.: Proposed test of macroscopic quantum contextuality, Phys. Rev. A (82), 032110 (2010)Google Scholar
  2. 2.
    Cabello, A., et al.: State-independent quantum contextuality for n qubits, arXiv:1102.....Google Scholar
  3. 3.
    Cabello, A.: The role of bounded memory in the foundations of quantum mechanics. Found. Phys., published online (September 16, 2010), doi: 10.1007/s10701-010-9507-2Google Scholar
  4. 4.
    Chomsky, N.: Three models for the description of language. IRE Transactions on Information Theory (2), 113–124 (1956)Google Scholar
  5. 5.
    Flajolet, P., Sedgewick, R.: Analytic Combinatorics. Cambridge University Press, New York (2009) ISBN 978-0-521-89806-5CrossRefzbMATHGoogle Scholar
  6. 6.
    Holevo, A.S.: Some estimates of the information transmitted by a quantum communication channel. Probl. Inf. Trans (9), 177 (1973)Google Scholar
  7. 7.
    Kleinmann, M., Gühne, O., Portillo, J.R., Larsson, J.-Å., Cabello, A.: Memory cost of quantum contextuality. arXiv:1007.3650Google Scholar
  8. 8.
    Mermin, N.D.: Simple unified form for the major no-hidden-variables theorems. Phys. Rev. Lett (65), 3373 (1990)Google Scholar
  9. 9.
    Peres, A.: Incompatible results of quantum measurements. Phys. Lett. A (151), 170 (1990)Google Scholar
  10. 10.
    Sipser, M.: Introduction to the Theory of Computation. PWS Publishing (1997) ISBN 0-534-94728-XGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Adán Cabello
    • 1
  • Joost J. Joosten
    • 2
  1. 1.Departamento de Física Aplicada IIUniversidad de SevillaSevillaSpain
  2. 2.Dept. Lògica, Història i Filosofia de la CiènciaUniversitat de BarcelonaBarcelonaSpain

Personalised recommendations