Speaker Recognition Based on a Bio-inspired Auditory Model: Influence of Its Components, Sound Pressure and Noise Level

  • Ernesto A. Martínez–Rams
  • Vicente Garcerán–Hernández
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6687)


In the present work an assessmet of the influence of the different components that form a bioinspired auditory model in the speaker recognition performance by means of neuronal networks, at different sound pressure levels and Gaussian white noise of the voice signal, was made. The speaker voice is processed through three variants of an auditory model. From its output, a set of psychophysical parameters is extracted, with which neuronal networks for speaker recognition will be trained. Furthermore, the aim is to compare three standardization methods of parameters. As a conclusion, we can observed how psycophysical parameters characterize the speaker with acceptable rates of recognition; the typology of auditory model has influence on speaker recognition.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Resch, B.: Automatic Speech Recognition with HTK (A Tutorial for the Course Computational Intelligence), pp. 1–6 (2004)Google Scholar
  2. 2.
    Richardson, M., Bilmes, J., Diorio, C.: Hidden-Articulator Markov Models for Speech Recognition. Speech Communication 41, 511–529 (2003)CrossRefGoogle Scholar
  3. 3.
    Reynolds, D.A.: Automatic Speaker Recognition, pp. 1–42. MIT Lincoln Laboratory (2002)Google Scholar
  4. 4.
    Wan, V.: Speaker Verification using Support Vector Machines (2003)Google Scholar
  5. 5.
    Godino–Llorente, J.I., Aguilera–Navarro, S., Gómez–Vilda, P.: Detección automática de patología por abuso vocal mediante modelos estadísticos de mezclas Gaussianas. In: URSI, pp. 1–2 (2001)Google Scholar
  6. 6.
    Reynolds, D.A., Rose, R.C.: Robust text-independent speaker identification using Gaussian Mixture Speaker Models. IEEE Transactions on Speech and Audio Processing 3(1), 72–83 (1995)CrossRefGoogle Scholar
  7. 7.
    Reynolds, D.A.: Speaker identification and verification using Gaussian mixture speaker models. Speech Communication, 91–108 (1995)Google Scholar
  8. 8.
    Ganapathiraju, A.: Support vector machines for speech recognition (2002)Google Scholar
  9. 9.
    Clarkson, P., Moreno, P.J.: On the use of support vector machines for phonetic classification, 1–4 (2005)Google Scholar
  10. 10.
    Chen, P., Lin, C., Schölkopf, B.: A Tutorial on v-Support Vector Machines, 1–29 (2003)Google Scholar
  11. 11.
    Martínez–Rams, E.A., Garcerán–Hernández, V.: Assessment of a speaker recognition system based on an auditory model and neural nets. In: Mira, J., Ferrández, J.M., Álvarez, J.R., de la Paz, F., Toledo, F.J. (eds.) IWINAC 2009. LNCS, vol. 5602, pp. 488–498. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  12. 12.
    Martínez–Rams, E., Cano–Ortiz, S.D., Garcerán–Hernández, V.: Implantes Cocleares: Desarrollo y Perspectivas. Revista Mexicana de Ingeniería Biomédica 27(1), 45–54 (2006)Google Scholar
  13. 13.
    Martínez–Rams, E., Garcerán–Hernández, V., Ferrández–Vicente, J.M.: Low Rate Stochastic Strategy for Cochlear Implants. Neurocomputing Letters 72(4-6), 936–943 (2009)CrossRefGoogle Scholar
  14. 14.
    Lopez Poveda, E.A., Eustaquio-Martín, A.: A biophysical model of the Inner Hair Cell: The contribution of potassium currents to peripherical auditory compression. Journal of the Association for Research in Otolaryngology JARO 7, 218–235 (2006)CrossRefGoogle Scholar
  15. 15.
    Ortega-Garcia, J., González-Rodriguez, J., Marrero-Aguiar, V.: Ahumada: A large speech corpus in Spanish for speaker identification and verification. Speech Communication 31(2-3), 255–264 (2004)CrossRefGoogle Scholar
  16. 16.
    Martínez–Rams, E., Cano–Ortiz, S.D., Garcerán–Hernández, V.: Diseño de banco de filtros para modelar la membrana basilar en una prótesis coclear. In: Conferencia Internacional FIE, pp. 1–6 (2006)Google Scholar
  17. 17.
    Lopez-Poveda, E.A., Meddis, R.: A human nonlinear cochlear filterbank. J. Acoust. Soc. Am. 110(6), 3107–3118 (2001)CrossRefGoogle Scholar
  18. 18.
    Martínez–Rams, E., Garcerán–Hernández, V.: ANF Stochastic Low Rate Stimulation. In: Mira, J., Álvarez, J.R. (eds.) IWINAC 2007. LNCS, vol. 4527, pp. 103–112. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  19. 19.
    Martínez–Rams, E., Garcerán–Hernández, V.: A Speaker Recognition System based on an Auditory Model and Neural Nets: performance at different levels of Sound Pressure and of Gaussian White Noise. In: Ferrández, J.M., et al. (eds.) IWINAC 2011. LNCS, vol. 6687, pp. 157–166. Springer, Heidelberg (2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Ernesto A. Martínez–Rams
    • 1
  • Vicente Garcerán–Hernández
    • 2
  1. 1.Universidad de OrienteSantiago de CubaCuba
  2. 2.Universidad Politécnica de CartagenaMurciaSpain

Personalised recommendations