Java Card Implementation of the Elliptic Curve Integrated Encryption Scheme Using Prime and Binary Finite Fields

  • V. Gayoso Martínez
  • L. Hernández Encinas
  • C. Sánchez Ávila
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6694)


Elliptic Curve Cryptography (ECC) can be considered an approach to public-key cryptography based on the arithmetic of elliptic curves and the Elliptic Curve Discrete Logarithm Problem (ECDLP). Regarding encryption, the best-known scheme based on ECC is the Elliptic Curve Integrated Encryption Scheme (ECIES), included in standards from ANSI, IEEE, and also ISO/IEC. In the present work, we provide a comparison of two Java Card implementations of ECIES that we have developed using prime and binary fields, respectively.


Java Card elliptic curves public key encryption schemes 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Rivest, R., Shamir, A., Adleman, L.: A method for obtaining digital signatures and public-key cryptosystems. ACM Commun. 26, 96–99 (1983)CrossRefzbMATHGoogle Scholar
  2. 2.
    Menezes, A.J., Oorschot, P., Vanstone, S.: Handbook of applied cryptography. CRC Press, Florida (1996)CrossRefzbMATHGoogle Scholar
  3. 3.
    Miller, V.S.: Use of elliptic curves in cryptography. In: Williams, H.C. (ed.) CRYPTO 1985. LNCS, vol. 218, pp. 417–426. Springer, Heidelberg (1986)Google Scholar
  4. 4.
    Koblitz, N.: Elliptic curve cryptosystems. Math. Comput. 48, 203–209 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Menezes, A.J.: Elliptic curve public key cryptosystems. Kluwer Academic Publishers, Boston (1993)CrossRefzbMATHGoogle Scholar
  6. 6.
    ElGamal, T.: A public-key cryptosystem and a signature scheme based on discrete logarithm. IEEE Trans. Inform. Theory 31, 469–472 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Preneel, B.: A survey of recent developments in cryptographic algorithms for smart cards. Comput. Netw. 51, 2223–2233 (2007)CrossRefzbMATHGoogle Scholar
  8. 8.
    Oracle Corporation. Java Card Technology,
  9. 9.
    MAOSCO Limited. MULTOS smart card technology,
  10. 10.
    Cohen, H., Frey, G.: Handbook of elliptic and hyperelliptic curve cryptography. Chapman and Hall, Florida (2006)zbMATHGoogle Scholar
  11. 11.
    Silverman, J.H.: The arithmetic of elliptic curves. Springer, New York (1986)CrossRefzbMATHGoogle Scholar
  12. 12.
    Hankerson, D., Menezes, A.J., Vanstone, S.: Guide to elliptic curve cryptography. Springer, New York (2004)zbMATHGoogle Scholar
  13. 13.
    NIST FIPS 186-3. Digital Signature Standard (DSS). National Institute of Standards and Technology (2009)Google Scholar
  14. 14.
    ANSI X9.63. Public Key Cryptography for the Financial Services Industry: Key Agreement and Key Transport Using Elliptic Curve Cryptography. American National Standards Institute (2001)Google Scholar
  15. 15.
    IEEE 1363a. Standard Specifications for Public Key Cryptography - Amendment 1: Additional Techniques. Institute of Electrical and Electronics Engineers (2004)Google Scholar
  16. 16.
    ISO/IEC 18033-2. Information Technology – Security Techniques – Encryption Algorithms – Part 2: Asymmetric Ciphers. International Organization for Standardization / International Electrotechnical Commission (2006)Google Scholar
  17. 17.
    NXP Semiconductors. Smart Solutions for Smart Services,
  18. 18.
    NXP Semiconductors. P5CT072 - Secure Dual Interface PKI Smart Card Controller (2004),
  19. 19.
    NXP Semiconductors. P5Cx012/02x/40/73/80/144 family - Secure Dual Interface and Contact PKI Smart Card Controller (2008),
  20. 20.
    IETF RFC 2104. HMAC: Keyed Hashing for Message Authentication. Internet Engineering Task Force (1997),
  21. 21.
    Rankl, W., Effing, W.: Smart card handbook. John Wiley & Sons, West Sussex (2003)CrossRefGoogle Scholar
  22. 22.
    Oracle Corporation. Java smart card I/O API,

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • V. Gayoso Martínez
    • 1
  • L. Hernández Encinas
    • 2
  • C. Sánchez Ávila
    • 3
  1. 1.Pozuelo de AlarcónUniversidad Francisco de VitoriaMadridSpain
  2. 2.Department of Information Processing and Coding, Applied Physics InstituteCSICMadridSpain
  3. 3.Department of Applied Mathematics to Information TechnologiesPolytechnic UniversityMadridSpain

Personalised recommendations