Advertisement

A Group Signature Scheme Based on the Integer Factorization and the Subgroup Discrete Logarithm Problems

  • R. Durán Díaz
  • L. Hernández Encinas
  • J. Muñoz Masqué
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6694)

Abstract

Group signature schemes allow a user, belonging to a specific group of users, to sign a message in an anonymous way on behalf of the group. In general, these schemes need the collaboration of a Trusted Third Party which, in case of a dispute, can reveal the identity of the real signer. A new group signature scheme is presented whose security is based on the Integer Factorization Problem (IFP) and on the Subgroup Discrete Logarithm Problem (SDLP).

Keywords

Digital signature Group signature Public key cryptography 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    ElGamal, T.: A public-key cryptosystem and a signature scheme based on discrete logarithm. IEEE Trans. Inform. Theory 31, 469–472 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Menezes, A., van Oorschot, P., Vanstone, S.: Handbook of applied cryptography. CRC Press, Boca Raton (1997)zbMATHGoogle Scholar
  3. 3.
    Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures and public-key cryptosystems. Comm. ACM 21, 120–126 (1978)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    National Institute of Standards and Technology: Secure Hash Standard (SHS). Federal Information Processing Standard Publication 180-2 (2002)Google Scholar
  5. 5.
    Chaum, D., van Heyst, E.: Group signatures. In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 257–265. Springer, Heidelberg (1991)CrossRefGoogle Scholar
  6. 6.
    Chaum, D.: Showing credentials without identification. In: Pichler, F. (ed.) EUROCRYPT 1985. LNCS, vol. 219, pp. 241–244. Springer, Heidelberg (1986)CrossRefGoogle Scholar
  7. 7.
    Ohta, K., Okamoto, T., Koyama, K.: Membership authentication for hierarchical multigroups using the extended fiat-shamir scheme. In: Damgård, I.B. (ed.) EUROCRYPT 1990. LNCS, vol. 473, pp. 446–457. Springer, Heidelberg (1991)CrossRefGoogle Scholar
  8. 8.
    Shizuya, H., Koyama, S., Itoh, T.: Demonstrating possession without revelating factors and its applications. In: Seberry, J., Pieprzyk, J.P. (eds.) AUSCRYPT 1990. LNCS, vol. 453, pp. 273–293. Springer, Heidelberg (1990)CrossRefGoogle Scholar
  9. 9.
    Bresson, E., Stern, J.: Efficient revocation in group signature. In: Kim, K.C. (ed.) PKC 2001. LNCS, vol. 1992, pp. 190–206. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  10. 10.
    Camenish, J., Michels, M.: Separability and efficiency for generic group signature schemes (Extended abstract). In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 413–430. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  11. 11.
    Camenish, J., Stadler, M.: Efficient group signature schemes for large groups. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 410–424. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  12. 12.
    Ateniese, G., Camenish, J., Joye, M., Tsudik, G.: A practical and provably secure coalition-resistant group signature scheme. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 255–270. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  13. 13.
    Ateniese, G., de Medeiros, B.: Efficient group signatures without trapdoors. In: Laih, C.-S. (ed.) ASIACRYPT 2003. LNCS, vol. 2894, pp. 246–268. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  14. 14.
    Nguyen, L., Safavi-Naini, R.: Efficient and provably secure trapdoor-free group signature schemes from bilinear pairings. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329, pp. 372–386. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  15. 15.
    Shoup, V., Gennaro, R.: Securing threshold cryptosystems against chosen ciphertext attack. J. Cryptology 15(2), 75–96 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  17. 17.
    Camenich, J., Lysyanskaya, A.: Signature schemes and anonymous credentials from bilinear maps. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 56–72. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  18. 18.
    Boneh, D., Boyen, X.: Short signatures without random oracles. In: Cachin, C., Camenish, J. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 56–73. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  19. 19.
    Susilo, W.: Short fail-stop signature scheme based on factorization and discrete logarithm assumptions. Theor. Comput. Sci. 410, 736–744 (2009)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • R. Durán Díaz
    • 1
  • L. Hernández Encinas
    • 2
  • J. Muñoz Masqué
    • 2
  1. 1.Universidad de AlcaláAlcalá de HenaresSpain
  2. 2.Instituto de Física AplicadaCSICMadridSpain

Personalised recommendations