A Multisignature Scheme Based on the SDLP and on the IFP

  • R. Durán Díaz
  • L. Hernández Encinas
  • J. Muñoz Masqué
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6694)


Multisignature schemes are digital signature schemes that permit one to determine a unique signature for a given message, depending on the signatures of all the members of a specific group. In this work, we present a new semi-short multisignature scheme based on the Subgroup Discrete Logarithm Problem (SDLP) and on the Integer Factorization Problem (IFP). The scheme can be carried out in an on- and off-line basis, is efficient, and the bitlength of the multisignature does not depend on the number of signers.


Digital signature Multisignature Public key cryptography 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Menezes, A., van Oorschot, P., Vanstone, S.: Handbook of applied cryptography. CRC Press, Boca Raton (1997)zbMATHGoogle Scholar
  2. 2.
    National Institute of Standards and Technology: Secure Hash Standard (SHS). Federal Information Processing Standard Publication 180-2 (2002)Google Scholar
  3. 3.
    Aboud, S.J.: Two efficient digital multisignature schemes. Int. J. Soft. Comput. 2, 113–117 (2007)Google Scholar
  4. 4.
    Boyd, C.: Some applications of multiple key ciphers. In: Günther, C.G. (ed.) EUROCRYPT 1988. LNCS, vol. 330, pp. 455–467. Springer, Heidelberg (1988)CrossRefGoogle Scholar
  5. 5.
    Itakura, K., Nakamura, K.: A public-key cryptosystem suitable for digital multisignatures. NEC Res. Development 71, 1–8 (1983)Google Scholar
  6. 6.
    Okamoto, T.: A digital multisignature scheme using bijective public-key cryptosystems. Commun. ACM Trans. Computer Systems 6, 432–441 (1988)CrossRefzbMATHGoogle Scholar
  7. 7.
    Aboud, S.J., Al-Fayoumi, M.A.: A new multisignature scheme using re-encryption technique. J. Applied Sci. 7, 1813–1817 (2007)CrossRefGoogle Scholar
  8. 8.
    Harn, L., Kiesler, T.: New scheme for digital multisignature. Elect. Lett. 25, 1002–1003 (1989)CrossRefzbMATHGoogle Scholar
  9. 9.
    Kiesler, T., Harn, L.: RSA blocking and multisignature schemes with no bit expansion. Elect. Lett. 26, 1490–1491 (1990)CrossRefGoogle Scholar
  10. 10.
    Park, S., Park, S., Kim, K., Won, D.: Two efficient RSA multisignature schemes. In: Han, Y., Quing, S. (eds.) ICICS 1997. LNCS, vol. 1334, pp. 217–222. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  11. 11.
    Pon, S.F., Lu, E.H., Lee, J.Y.: Dynamic reblocking RSA-based multisignatures scheme for computer and communication networks. IEEE Comm. Let. 6, 43–44 (2002)CrossRefGoogle Scholar
  12. 12.
    Laih, C.S., Yen, S.M.: Multisignature for specified group of verifiers. J. Inform. Sci. Engrg. 12(1), 143–152 (1996)Google Scholar
  13. 13.
    He, W.H.: Weakness in some multisignature schemes for specified group of verifiers. Inform. Proc. Lett. 83, 95–99 (2002)CrossRefzbMATHGoogle Scholar
  14. 14.
    Yen, S.M.: Cryptanalysis and repair of the multi-verifier signature with verifier specification. Computers & Security 15(6), 537–544 (1996)CrossRefGoogle Scholar
  15. 15.
    Zhang, Z., Xiao, G.: New multisignature scheme for specified group of verifiers. Appl. Math. Comput. 157, 425–431 (2004)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Lv, J., Wang, X., Kim, K.: Security of a multisignature scheme for specified group of verifiers. Appl. Math. Comput. 166, 58–63 (2005)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Yoon, E.J., Yoo, K.Y.: Cryptanalysis of Zhang-Xiao’s multisignature scheme for specified group of verifiers. Appl. Math. Comput. 170, 226–229 (2005)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Bellare, M., Neven, G.: Multi-signatures in the plain public-key model and a general forking lemma. In: Proc. 13th ACM Conference on Computer and Communications Security (CCS 2006), pp. 390–399. ACM Press, New York (2006)Google Scholar
  19. 19.
    Pedersen, T.P., Pfitzmann, B.: Fail-stop signatures. SIAM J. Comput. 26, 291–330 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Maurer, U.: Some number-theoretic conjectures and their relation to the generation of cryptographic primes. In: Proc. Cryptography and Coding 1992, pp. 173–191. Oxford University Press, New York (1992)Google Scholar
  21. 21.
    Susilo, W.: Short fail-stop signature scheme based on factorization and discrete logarithm assumptions. Theor. Comput. Sci. 410, 736–744 (2009)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • R. Durán Díaz
    • 1
  • L. Hernández Encinas
    • 2
  • J. Muñoz Masqué
    • 2
  1. 1.Universidad de AlcaláAlcalá de HenaresSpain
  2. 2.Instituto de Física AplicadaCSICMadridSpain

Personalised recommendations