Advertisement

Structural Properties of Cryptographic Sequences

  • A. Fúster-Sabater
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6694)

Abstract

In the present work, it is shown that the binary sequences obtained from a cryptographic generator, the so-called generalized self-shrinking generator, are just particular solutions of a type of linear difference equations. Cryptographic parameters e.g. period, linear complexity or balancedness of the previous sequences can be analyzed in terms of linear equation solutions. In brief, computing the solutions of linear difference equations is an easy method of generating new sequences with guaranteed cryptographic parameters.

Keywords

pseudorandom sequence linear difference equation sequence generator stream cipher cryptography 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bluetooth, Specifications of the Bluetooth system,Version 1.1, http://www.bluetooth.com/
  2. 2.
    Coppersmith, D., Krawczyk, H., Mansour, Y.: The Shrinking Generator. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 22–39. Springer, Heidelberg (1994)CrossRefGoogle Scholar
  3. 3.
    Dickson, L.E.: Linear Groups with an Exposition of the Galois Field Theory, pp. 3–71. Dover, New York (1958); An updated reprint can be found at, http://www-math.cudenver.edu/~wcherowi/courses/finflds.html Google Scholar
  4. 4.
    eSTREAM, the ECRYPT Stream Cipher Project, Call for Primitives, http://www.ecrypt.eu.org/stream/
  5. 5.
    Fúster-Sabater, A., Caballero-Gil, P.: Strategic Attack on the Shrinking Generator. Theoretical Computer Science 409(3), 530–536 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Fúster-Sabater, A., Caballero-Gil, P., Delgado-Mohatar, O.: Deterministic Computation of Pseudorandomness in Sequences of Cryptographic Application. In: Allen, G., Nabrzyski, J., Seidel, E., van Albada, G.D., Dongarra, J., Sloot, P.M.A. (eds.) ICCS 2009. LNCS, vol. 5544, pp. 621–630. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  7. 7.
    Golomb, S.W.: Shift Register-Sequences. Aegean Park Press, Laguna Hill (1982)zbMATHGoogle Scholar
  8. 8.
    Hu, Y., Xiao, G.: Generalized Self-Shrinking Generator. IEEE Trans. Inform. Theory 50, 714–719 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Lidl, R., Niederreiter, H.: Introduction to Finite Fields and Their Applications. Cambridge University Press, Cambridge (1986)zbMATHGoogle Scholar
  10. 10.
    Meier, W., Staffelbach, O.: The Self-shrinking Generator. In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 205–214. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  11. 11.
    Menezes, A.J., et al.: Handbook of Applied Cryptography. CRC Press, New York (1997)zbMATHGoogle Scholar
  12. 12.
    NIST Test suite for random numbers, http://csrc.nist.gov/rng/
  13. 13.
    Rivest, R.L.: The RC4 Encryption Algorithm. RSA Data Sec., Inc., March 98, http://www.rsasecurity.com
  14. 14.
    Robshaw, M., Billet, O.: New Stream Cipher Designs. LNCS, vol. 4986. Springer, Heidelberg (2008)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • A. Fúster-Sabater
    • 1
  1. 1.Institute of Applied PhysicsC.S.I.C.MadridSpain

Personalised recommendations