Skip to main content

The AllDifferent Constraint with Precedences

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 6697)

Abstract

We propose AllDiffPrec, a new global constraint that combines together an AllDifferent constraint with precedence constraints that strictly order given pairs of variables. We identify a number of applications for this global constraint including instruction scheduling and symmetry breaking. We give an efficient propagation algorithm that enforces bounds consistency on this global constraint. We show how to implement this propagator using a decomposition that extends the bounds consistency enforcing decomposition proposed for the AllDifferent constraint. Finally, we prove that enforcing domain consistency on this global constraint is NP-hard in general.

Keywords

  • Time Complexity
  • Constraint Programming
  • Precedence Constraint
  • Constraint Satisfaction Problem
  • Variable Domain

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Supported by the Australian Government’s Department of Broadband, Communications and the Digital Economy and the ARC.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-21311-3_6
  • Chapter length: 17 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   69.99
Price excludes VAT (USA)
  • ISBN: 978-3-642-21311-3
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   89.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lauriere, J.L.: ALICE: a language and a program for stating and solving combinatorial problems. Artificial Intelligence 10, 29–127 (1978)

    CrossRef  MathSciNet  Google Scholar 

  2. Régin, J.C.: A filtering algorithm for constraints of difference in CSPs. In: Proceedings of the 12th National Conference on AI, Association for Advancement of Artificial Intelligence, pp. 362–367 (1994)

    Google Scholar 

  3. Leconte, M.: A bounds-based reduction scheme for constraints of difference. In: Proceedings of Second International Workshop on Constraint-based Reasoning, Constraint 1996 (1996)

    Google Scholar 

  4. Puget, J.: A fast algorithm for the bound consistency of alldiff constraints. In: 15th National Conference on Artificial Intelligence, Association for Advancement of Artificial Intelligence, pp. 359–366 (1998)

    Google Scholar 

  5. Mehlhorn, K., Thiel, S.: Faster algorithms for bound-consistency of the sortedness and the alldifferent constraint. In: Dechter, R. (ed.) CP 2000. LNCS, vol. 1894, p. 306. Springer, Heidelberg (2000)

    CrossRef  Google Scholar 

  6. Lopez-Ortiz, A., Quimper, C., Tromp, J., van Beek, P.: A fast and simple algorithm for bounds consistency of the alldifferent constraint. In: Proceedings of the 18th International Conference on AI, International Joint Conference on Artificial Intelligence (2003)

    Google Scholar 

  7. Stergiou, K., Walsh, T.: The difference all-difference makes. In: Proceedings of 16th IJCAI, International Joint Conference on Artificial Intelligence (1999)

    Google Scholar 

  8. Milano, M., Ottosson, G., Refalo, P., Thorsteinsson, E.: The role of integer programming techniques in constraint programming’s global constraints. INFORMS Journal on Computing 14, 387–402 (2002)

    CrossRef  MathSciNet  Google Scholar 

  9. Williams, H., Yan, H.: Representations of the all different predicate of constraint satisfaction in integer programming. INFORMS Journal on Computing 13, 96–103 (2001)

    CrossRef  MathSciNet  Google Scholar 

  10. Walsh, T.: Constraint patterns. In: Rossi, F. (ed.) CP 2003. LNCS, vol. 2833, pp. 53–64. Springer, Heidelberg (2003)

    CrossRef  Google Scholar 

  11. Beldiceanu, N., Bourreau, E., Rivreau, D., Simonis, H.: Solving Resource-constrained Project Scheduling Problems with CHIP. In: 5th International Workshop on Project Management and Scheduling (PMS 1996), Poznan, pp. 35–38 (1996)

    Google Scholar 

  12. Simonis, H.: Building industrial applications with constraint programming. In: Comon, H., Marché, C., Treinen, R. (eds.) CCL 1999. LNCS, vol. 2002, p. 271. Springer, Heidelberg (2001)

    CrossRef  Google Scholar 

  13. Debruyne, R., Bessière, C.: Some practicable filtering techniques for the constraint satisfaction problem. In: Proceedings of the 15th IJCAI, International Joint Conference on Artificial Intelligence, pp. 412–417 (1997)

    Google Scholar 

  14. Garey, M., Johnson, D., Simons, B., Tarjan, R.: Scheduling unit-time tasks with arbitrary release times and deadlines. SIAM J. Comput. 10, 256–269 (1981)

    CrossRef  MathSciNet  Google Scholar 

  15. Puget, J.-F.: Breaking all value symmetries in surjection problems. In: van Beek, P. (ed.) CP 2005. LNCS, vol. 3709, pp. 490–504. Springer, Heidelberg (2005)

    CrossRef  Google Scholar 

  16. Puget, J.F.: Symmetry in injective problems. Constraint Programming Letters 3, 1–20 (2007)

    Google Scholar 

  17. Mehlhorn, K., Thiel, S.: Faster algorithms for bound-consistency of the sortedness and the alldifferent constraint. In: Van Hentenryck, P. (ed.) CP 2002. LNCS, vol. 2470, pp. 306–319. Springer, Heidelberg (2002)

    Google Scholar 

  18. Bessiere, C., Katsirelos, G., Narodytska, N., Quimper, C.G., Walsh, T.: Decompositions of all different, global cardinality and related constraints. In: Proceedings of 21st IJCAI, International Joint Conference on Artificial Intelligence, pp. 419–424 (2009)

    Google Scholar 

  19. Bessiere, C., Katsirelos, G., Narodytska, N., Quimper, C.G., Walsh, T.: Propagating conjunctions of alldifferent constraints. In: Fox, M., Poole, D. (eds.) Proc. of the Twenty-Fourth AAAI Conference on Artificial Intelligence (AAAI 2010). AAAI Press, Menlo Park (2010)

    Google Scholar 

  20. Hnich, B., Kiziltan, Z., Walsh, T.: Combining symmetry breaking with other constraints: lexicographic ordering with sums. In: Proceedings of the 8th International Symposium on the Artificial Intelligence and Mathematics (2004)

    Google Scholar 

  21. Katsirelos, G., Narodytska, N., Walsh, T.: Combining symmetry breaking and global constraints. In: Oddi, A., Fages, F., Rossi, F. (eds.) CSCLP 2008. LNCS, vol. 5655, pp. 84–98. Springer, Heidelberg (2009)

    CrossRef  Google Scholar 

  22. Gabow, H., Tarjan, R.: A linear-time algorithm for a special case of disjoint set union. In: Proceedings of the Fifteenth Annual ACM Symposium on Theory of Computing (STOC 1983), pp. 246–251. ACM, New York (1983)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bessiere, C., Narodytska, N., Quimper, CG., Walsh, T. (2011). The AllDifferent Constraint with Precedences. In: Achterberg, T., Beck, J.C. (eds) Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems. CPAIOR 2011. Lecture Notes in Computer Science, vol 6697. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21311-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21311-3_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21310-6

  • Online ISBN: 978-3-642-21311-3

  • eBook Packages: Computer ScienceComputer Science (R0)