Biegler, L., Grossmann, I., Westerberg, A.: Systematic Methods of Chemical Process Design. Prentice-Hall, Upper Saddle River (NJ) (1997)
Google Scholar
Floudas, C.: Global optimization in design and control of chemical process systems. Journal of Process Control 10, 125–134 (2001)
CrossRef
Google Scholar
Tawarmalani, M., Sahinidis, N.: Exact algorithms for global optimization of mixed-integer nonlinear programs. In: Pardalos, P., Romeijn, H. (eds.) Handbook of Global Optimization, vol. 2, pp. 65–86. Kluwer Academic Publishers, Dordrecht (2002)
CrossRef
Google Scholar
Tawarmalani, M., Sahinidis, N.: Global optimization of mixed integer nonlinear programs: A theoretical and computational study. Mathematical Programming 99, 563–591 (2004)
MathSciNet
CrossRef
Google Scholar
Belotti, P., Lee, J., Liberti, L., Margot, F., Wächter, A.: Branching and bounds tightening techniques for non-convex MINLP. Optimization Methods and Software 24(4-5), 597–634 (2008)
MathSciNet
CrossRef
Google Scholar
Savelsbergh, M.W.P.: Preprocessing and probing techniques for mixed integer programming problems. ORSA Journal on Computing 6(4), 445–455 (1994)
MathSciNet
CrossRef
Google Scholar
Cortes, C., Vapnik, V.: Support-vector networks. Machine Learning 20, 273–297 (1995)
MATH
Google Scholar
Hutter, F., Hoos, H., Leyton-Brown, K.: Automated configuration of mixed integer programming solvers. In: Lodi, A., Milano, M., Toth, P. (eds.) CPAIOR 2010. LNCS, vol. 6140, pp. 186–202. Springer, Heidelberg (2010)
CrossRef
Google Scholar
Markót, M.C., Schichl, H.: Comparison and automated selection of local optimization solvers for interval global optimization methods. Technical report, Faculty of Mathematics, University of Vienna
Google Scholar
Sahinidis, N.: Baron: Branch and reduce optimization navigator, user’s manual, version 4.0 (1999),
http://archimedes.scs.uiuc.edu/baron/manuse.pdf
Belotti, P.: Couenne: a user’s manual. Technical report, Lehigh University (2009)
Google Scholar
Shectman, J., Sahinidis, N.: A finite algorithm for global minimization of separable concave programs. Journal of Global Optimization 12, 1–36 (1998)
MathSciNet
CrossRef
Google Scholar
Smith, E.: On the Optimal Design of Continuous Processes. PhD thesis, Imperial College of Science, Technology and Medicine, University of London (October 1996)
Google Scholar
Cristianini, N., Shawe-Taylor, J.: An Introduction to Support Vector Machines and Other Kernel-based Learning Methods. Cambridge University Press, Cambridge (2000)
CrossRef
Google Scholar
Schölkopf, B., Smola, A.J.: Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. MIT Press, Cambridge (2002)
Google Scholar
Achterberg, T., Koch, T., Martin, A.: Branching rules revisited. Operations Research Letters 33(1), 42–54 (2005)
MathSciNet
CrossRef
Google Scholar
Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines (2001), Software available at
http://www.csie.ntu.edu.tw/~cjlin/libsvm
Bussieck, M.R., Drud, A.S., Meeraus, A.: MINLPLib — a collection of test models for Mixed-Integer Nonlinear Programming. INFORMS Journal on Computing 15(1) (2003)
Google Scholar
CMU-IBM: Cyber-Infrastructure for MINLP,
http://www.minlp.org
Koggalage, R., Halgamuge, S.: Reducing the number of training samples for fast support vector machine classification. Neural Information Processing - Letters 2(3), 57–65 (2004)
Google Scholar