Automating the ILP Setup Task: Converting User Advice about Specific Examples into General Background Knowledge

  • Trevor Walker
  • Ciaran O’Reilly
  • Gautam Kunapuli
  • Sriraam Natarajan
  • Richard Maclin
  • David Page
  • Jude Shavlik
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6489)


Inductive Logic Programming (ILP) provides an effective method of learning logical theories given a set of positive examples, a set of negative examples, a corpus of background knowledge, and specification of a search space (e.g., via mode definitions) from which to compose the theories. While specifying positive and negative examples is relatively straightforward, composing effective background knowledge and search-space definition requires detailed understanding of many aspects of the ILP process and limits the usability of ILP. We introduce two techniques to automate the use of ILP for a non-ILP expert. These techniques include automatic generation of background knowledge from user-supplied information in the form of a simple relevance language, used to describe important aspects of specific training examples, and an iterative-deepening-style search process.


Advice Taking Human Teaching of Machines 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alphonse, E., Matwin, S.: Feature subset selection and inductive logic programming. In: Proceedings of the 19th Intl. Conf. on Machine Learning, pp. 11–18 (2002)Google Scholar
  2. 2.
    De Raedt, L.: Interactive Theory Revision: An Inductive Logic Programming Approach. Academic Press, London (1992)Google Scholar
  3. 3.
    Finn, P., Muggleton, S., Page, D., Srinivasan, A.: Discovery of pharmacophores using the inductive logic programming system Progol. Machine Learning 30, 241–270 (1998)CrossRefGoogle Scholar
  4. 4.
    Getoor, L., Taskar, B. (eds.): Introduction to Statistical Relational Learning. MIT Press, Cambridge (2007)MATHGoogle Scholar
  5. 5.
    Kohavi, R., John, G.: Automatic parameter selection by minimizing estimated error. In: Proceedings of the 12th International Conf. on Machine Learning, pp. 304–312 (1995)Google Scholar
  6. 6.
    Lavrac, N., Gamberger, D., Jovanosk, V.: A study of relevance for learning in deductive databases. Journal of Logic Programming 40, 215–249 (1999)MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Mangasarian, O., Shavlik, J., Wild, E.: Knowledge-based kernel approximation. Journal of Machine Learning Research 5, 1127–1141 (2004)MathSciNetGoogle Scholar
  8. 8.
    Mozina, M., Zabkar, J., Bratko, I.: Argument based machine learning. Artificial Intelligence 171, 922–937 (2007)MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Muggleton, S., Buntine, W.: Machine invention of first-order predicates by inverting resolution. In: Proceedings of the 5th Intl. Conf. on Machine Learning, pp. 339–352 (1988)Google Scholar
  10. 10.
    Muggleton, S.: DUCE, an oracle based approach to constructive induction. In: Proceedings of the International Joint Conf. on Artificial Intelligence, pp. 287–292 (1987)Google Scholar
  11. 11.
    Muggleton, S.: Inverse entailment and Progol. New Generation Comp. 13, 245–286 (1995)CrossRefGoogle Scholar
  12. 12.
    Oblinger, D.: Bootstrap learning - external materials (2006),
  13. 13.
    Pazzani, M., Kibler, D.: The utility of knowledge in inductive learning. Machine Learning 9, 57–94 (1992)Google Scholar
  14. 14.
    Richards, B., Mooney, R.: Automated refinement of first-order Horn-clause domain theories. Machine Learning 19, 95–131 (1995)Google Scholar
  15. 15.
    Sammut, C.: Learning Concepts by Performing Experiments. Ph.D. Dissertation, Department of Computer Science, University of New South Wales (1981)Google Scholar
  16. 16.
    Shapiro, E.Y.: Algorithmic Program Debugging. MIT Press, Cambridge (1983)Google Scholar
  17. 17.
    Srinivasan, A., King, R.D., Bain, M.E.: An empirical study of the use of relevance information in inductive logic programming. JMLR 4, 369–383 (2003)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Srinivasan, A., Muggleton, S., King, R.: Comparing the use of background knowledge by inductive logic programming systems. In: Proc. 5th ILP Workshop (1995)Google Scholar
  19. 19.
  20. 20.
    Towell, G., Shavlik, J.: Knowledge-based artificial neural networks. Artificial Intelligence 70, 119–165 (1994)MATHCrossRefGoogle Scholar
  21. 21.
    Walker, T.: Broadening the Applicability of Relational Learning. Ph.D. Dissertation, Computer Sciences Department, University of Wisconsin – Madison (forthcoming, 2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Trevor Walker
    • 1
  • Ciaran O’Reilly
    • 2
  • Gautam Kunapuli
    • 1
  • Sriraam Natarajan
    • 1
  • Richard Maclin
    • 3
  • David Page
    • 1
  • Jude Shavlik
    • 1
  1. 1.University of WisconsinMadisonUSA
  2. 2.SRI InternationalUSA
  3. 3.University of MinnesotaDuluthUSA

Personalised recommendations