Abstract
Many SRL models pose logical inference as weighted satisfiability solving. Performing logical inference after completely grounding clauses with all possible constants is computationally expensive and approaches such as LazySAT [8] utilize the sparseness of the domain to deal with this. Here, we investigate the efficiency of restricting the Knowledge Base (Σ) to the set of first order horn clauses. We propose an algorithm that prunes the search space for satisfiability in horn clauses and prove that the optimal solution is guaranteed to exist in the pruned space. The approach finds a model, if it exists, in polynomial time; otherwise it finds an interpretation that is most likely given the weights. We provide experimental evidence that our approach reduces the size of search space substantially.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Selman, B., Levesque, H., Mitchell, D.: A New Method for Solving Hard Satisfiability Problems. In: AAAI 1992, San Jose, CA, pp. 440–446 (1992)
Selman, B., Kautz, H., Cohen, B.: Local Search Strategies for Satisfiability Testing. In: Second DIMACS Implementation Challenge on Cliques, Coloring and Satisfiability (1993)
Hogger, C.J.: Essentials of logic programming. Oxford University Press, New York (1990)
Heras, F., Larrosa, J., Oliveras, A.: MINIMAXSAT: an efficient weighted max-SAT solver. Journal of Artificial Intelligence Research 31(1), 1–32 (2008)
Kisynski, J., Poole, D.: Lifted aggregation in directed first-order probabilistic models. In: Proceedings of the 21st International Joint Conference on Artifical Intelligence, California, USA, pp. 1922–1929 (2009)
Davis, M., Putnam, H., Logemann, G., Loveland, D.W.: A Machine Program for Theorem Proving. Communications of the ACM 5(7), 394–397 (1962)
Singla, P., Domingos, P.: Discriminative training of Markov Logic Networks. In: AAAI 2005, pp. 868–873 (2005)
Singla, P., Domingos, P.: Memory-Efficient Inference in Relational Domains. In: Proceedings of the Twenty-First National Conference on Artificial Intelligence, pp. 488–493. AAAI Press, Boston (2006)
Alsinet, T., Many, F., Planes, J.: An efficient solver for weighted Max-SAT. Journal of Global Optimization, 61–73 (2008)
Shavlik, J., Natarajan, S.: Speeding up inference in Markov logic networks by preprocessing to reduce the size of the resulting grounded network. In: Proceedings of the 21st International JCAI (2009)
Fern, A.: A Penalty-Logic Simple-Transition Model for Structured Sequences. In: Computational Intelligence, pp. 302–334 (2009)
Mihalkova, L., Richardson, M.: Speeding up inference in statistical relational learning by clustering similar query literals. In: De Raedt, L. (ed.) ILP 2009. LNCS, vol. 5989, pp. 110–122. Springer, Heidelberg (2010)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Nair, N., Govindan, A., Jayaraman, C., Kiran, T.V.S., Ramakrishnan, G. (2011). Pruning Search Space for Weighted First Order Horn Clause Satisfiability. In: Frasconi, P., Lisi, F.A. (eds) Inductive Logic Programming. ILP 2010. Lecture Notes in Computer Science(), vol 6489. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21295-6_20
Download citation
DOI: https://doi.org/10.1007/978-3-642-21295-6_20
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-21294-9
Online ISBN: 978-3-642-21295-6
eBook Packages: Computer ScienceComputer Science (R0)