Advertisement

BET : An Inductive Logic Programming Workbench

  • Srihari Kalgi
  • Chirag Gosar
  • Prasad Gawde
  • Ganesh Ramakrishnan
  • Kekin Gada
  • Chander Iyer
  • T. V. S Kiran
  • Ashwin Srinivasan
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6489)

Abstract

Existing ILP (Inductive Logic Programming) systems are implemented in different languages namely C, Progol, etc. Also, each system has its customized format for the input data. This makes it very tedious and time consuming on the part of a user to utilize such a system for experimental purposes as it demands a thorough understanding of that system and its input specification. In the spirit of Weka [1], we present a relational learning workbench called BET(Background + Examples = Theories), implemented in Java. The objective of BET is to shorten the learning curve of users (including novices) and to facilitate speedy development of new relational learning systems as well as quick integration of existing ILP systems. The standardized input format makes it easier to experiment with different relational learning algorithms on a common dataset.

Keywords

BET ILP systems Golem Progol FOIL PRISM TILDE 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Frank, E., Hall, M.A., Holmes, G., Kirkby, R., Pfahringer, B., Witten, I.H.: Weka- A machine learning workbench for data mining. In: Data Mining and Knowledge Discovery Handbook- A Complete Guide for Practitioners and Researchers, pp. 1305–1314. Springer, Berlin (2005)CrossRefGoogle Scholar
  2. 2.
    Blockeel, H., De Raedt, L.: Top-down induction of first-order logical decision trees. Artificial Intelligence Journal, 285–297 (1998)Google Scholar
  3. 3.
    Muggleton, S.H., Feng, C.: Efficient induction of logic programs. In: Proceedings of the First Conference on Algorithmic Learning Theory, Ohmsha, Tokyo, pp. 368–381 (1990)Google Scholar
  4. 4.
    Ross Quinlan, J., Mike Cameron-Jones, R.: FOIL: A Midterm Report. In: Brazdil, P.B. (ed.) ECML 1993. LNCS, vol. 667, pp. 3–20. Springer, Heidelberg (1993)Google Scholar
  5. 5.
    Sato, T., Kameya, Y., Zhou, N.-F.: Generative Modeling with Failure in PRISM. In: IJCAI, pp. 847–852 (2005)Google Scholar
  6. 6.
    Sato, T., Kameya, Y.: PRISM: A Language for Symbolic-Statistical Modeling. In: IJCAI, pp. 1330–1339 (1997)Google Scholar
  7. 7.
    Kavurucu, Y., Senkul, P., Toroslu, I.H.: ILP-based concept discovery in multi-relational data mining. Expert Systems with Applications 36, 11418–11428 (2009)CrossRefGoogle Scholar
  8. 8.
  9. 9.
    Statistical Relational Learning Notes, http://www.cse.iitb.ac.in/~cs717/notes/
  10. 10.
    TILDE: Top-down Induction of Logical Decision Trees, http://www-ai.ijs.si/~ilpnet2/systems/tilde.html
  11. 11.
  12. 12.
  13. 13.
  14. 14.
    General Inductive Logic Programming System, http://www.doc.ic.ac.uk/~jcs06/GILPS/
  15. 15.
    ILP Systems Integrated Implemented in BET and Sample Examples, http://www.cse.iitb.ac.in/~bet/appendix.pdf

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Srihari Kalgi
    • 1
  • Chirag Gosar
    • 1
  • Prasad Gawde
    • 1
  • Ganesh Ramakrishnan
    • 1
  • Kekin Gada
    • 1
  • Chander Iyer
    • 1
  • T. V. S Kiran
    • 1
  • Ashwin Srinivasan
    • 1
  1. 1.Department of Computer Science and EngineeringIIT BombayIndia

Personalised recommendations