Skip to main content

Cotranslational Protein Folding with L-systems

  • Conference paper
Advances in Artificial Life. Darwin Meets von Neumann (ECAL 2009)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5777))

Included in the following conference series:

  • 1252 Accesses

Abstract

A protein molecule adopts a specific 3D structure, necessary for its function in the cell, through a process of folding. Modelling the folding process and predicting the final fold from the unique amino acid sequence remain challenging problems. We have previously described the application of L-systems, parallel rewriting rules, to modelling protein folding using two complementary approaches: a physics-based approach, using calculations of interatomic forces, and a knowledge-based approach, using data from fragments of known protein structures. Here we describe a model combining these two approaches creating an adaptive stochastic open L-systems model of protein folding. L-systems were originally developed to model growth and development. Here we also describe extensions of our L-systems models to investigate cotranslational protein folding, i.e. folding during protein biosynthesis on the ribosome, which is increasingly thought to play an important role. We demonstrate that cotranslational folding fits very naturally into the L-systems framework.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anfinsen, C.B.: Principles that govern the folding of protein chains. Science 181(96), 223–230 (1973)

    Article  Google Scholar 

  2. Dill, K.A., Ozkan, S.B., Shell, M.S., Weikl, T.R.: The protein folding problem. Annu. Rev. Biophys. 37, 289–316 (2008)

    Article  Google Scholar 

  3. Daggett, V.: Protein folding-simulation. Chem. Rev. 106(5), 1898–1916 (2006)

    Article  Google Scholar 

  4. Lindenmayer, A.: Mathematical models for cellular interactions in development. I. Filaments with one-sided inputs. J. Theor. Biol. 18(3), 280–299 (1968)

    Article  Google Scholar 

  5. Lindenmayer, A.: Mathematical models for cellular interactions in development. II. Simple and branching filaments with two-sided inputs. J. Theor. Biol. 18(3), 300–315 (1968)

    Article  Google Scholar 

  6. Prusinkiewicz, P., Lindenmayer, A.: The Algorithmic Beauty of Plants. Springer, Heidelberg (1990)

    Book  MATH  Google Scholar 

  7. Danks, G.B., Stepney, S., Caves, L.S.D.: Folding protein-like structures with open L-systems. In: Almeida e Costa, F., Rocha, L.M., Costa, E., Harvey, I., Coutinho, A. (eds.) ECAL 2007. LNCS (LNAI), vol. 4648, pp. 1100–1109. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  8. Danks, G.B., Stepney, S., Caves, L.S.D.: Protein folding with stochastic L-systems. In: Artificial Life XI, pp. 150–157. MIT Press, Cambridge (2008)

    Google Scholar 

  9. Kolb, V.A.: Cotranslational protein folding. Mol. Biol. 35(4), 584–590 (2001)

    Article  Google Scholar 

  10. Ramachandran, G.N., Sasisekharan, V.: Conformation of polypeptides and proteins. Adv. Protein Chem. 23, 283–438 (1968)

    Article  Google Scholar 

  11. Kabsch, W., Sander, C.: Dictionary of protein secondary structure: Pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 22(12), 2577–2637 (1983)

    Article  Google Scholar 

  12. Nissen, P., Hansen, J., Ban, N., Moore, P.B., Steitz, T.A.: The structural basis of ribosome activity in peptide bond synthesis. Science 289(5481), 920–930 (2000)

    Article  Google Scholar 

  13. Kubelka, J., Hofrichter, J., Eaton, W.A.: The protein folding ‘speed limit’. Curr. Opin. Struc. Biol. 14(1), 76–88 (2004)

    Article  Google Scholar 

  14. Basharov, M.A.: Protein folding. J. Cell. Mol. Med. 7(3), 223–237 (2003)

    Article  Google Scholar 

  15. Voss, N.R., Gerstein, M., Steitz, T.A., Moore, P.B.: The geometry of the ribosomal polypeptide exit tunnel. J. Mol. Biol. 360(4), 893–906 (2006)

    Article  Google Scholar 

  16. Malkin, L.I., Rich, A.: Partial resistance of nascent polypeptide chains to proteolytic digestion due to ribosomal shielding. J. Mol. Biol. 26(2), 329–346 (1967)

    Article  Google Scholar 

  17. Blobel, G., Sabatini, D.D.: Controlled proteolysis of nascent polypeptides in rat liver cell fractions. I. Locations of polypeptides within ribosomes. J. Cell Biol. 45(1), 130–145 (1970)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Danks, G.B., Stepney, S., Caves, L.S.D. (2011). Cotranslational Protein Folding with L-systems. In: Kampis, G., Karsai, I., Szathmáry, E. (eds) Advances in Artificial Life. Darwin Meets von Neumann. ECAL 2009. Lecture Notes in Computer Science(), vol 5777. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21283-3_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21283-3_36

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21282-6

  • Online ISBN: 978-3-642-21283-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics