Skip to main content

A New Method for Identifying Essential Proteins Based on Edge Clustering Coefficient

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNBI,volume 6674)

Abstract

Identification of essential proteins is key to understanding the minimal requirements for cellular life and important for drug design. Rapid increasing of available protein-protein interaction data has made it possible to detect protein essentiality on network level. A series of centrality measures have been proposed to discover essential proteins based on network topology. However, most of them tended to focus only on topologies of single proteins, but ignored the relevance between interactions and protein essentiality. In this paper, a new method for identifying essential proteins based on edge clustering coefficient, named as SoECC, is proposed. This method binds characteristics of edges and nodes effectively. The experimental results on yeast protein interaction network show that the number of essential proteins discovered by SoECC universally exceeds that discovered by other six centrality measures. Especially, compared to BC and CC, SoECC is 20% higher in prediction accuracy. Moreover, the essential proteins discovered by SoECC show significant cluster effect.

Keywords

  • essential proteins
  • protein interaction network
  • centrality measures
  • edge clustering coefficient

This work is supported in part by the National Natural Science Foundation of China under Grant No.61003124 and No.61073036, the Ph.D. Programs Foundation of Ministry of Education of China No.20090162120073, the Freedom Explore Program of Central South University No.201012200124, the U.S. National Science Foundation under Grants CCF-0514750, CCF-0646102, and CNS-0831634.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-21260-4_12
  • Chapter length: 12 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   84.99
Price excludes VAT (USA)
  • ISBN: 978-3-642-21260-4
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   109.00
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Winzeler, E.A., et al.: Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science 285(5429), 901–906 (1999)

    CrossRef  Google Scholar 

  2. Hu, W., Sillaots, S., Lemieux, S., et al.: Essential Gene Identification and Drug Target Prioritization in Aspergillus fumigatus. PLoS Pathog. 3(3), e24 (2007)

    CrossRef  Google Scholar 

  3. Ho, Y., et al.: Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature 415(6868), 180–183 (2002)

    CrossRef  Google Scholar 

  4. Hahn, M.W., Kern, A.D.: Comparative Genomics of Centrality and Essentiality in Three Eukaryotic Protein-Interaction Networks. Mol. Biol. Evol. 22(4), 803–806 (2005)

    CrossRef  Google Scholar 

  5. Jeong, H., Mason, S.P., Barabási, A.L., Oltvai, Z.N.: Lethality and centrality in protein networks. Nature 411(6833), 41–42 (2001)

    CrossRef  Google Scholar 

  6. Joy, M.P., Brock, A., Ingber, D.E., Huang, S.: High-betweenness proteins in the yeast protein interaction network. J. Biomed. Biotechnol. (2), 96–103 (2005)

    Google Scholar 

  7. Wuchty, S., Stadler, P.F.: Centers of complex networks. J. Theor. Biol. 223(1), 45–53 (2003)

    CrossRef  MathSciNet  Google Scholar 

  8. Estrada, E., Rodríguez-Velázquez, J.A.: Subgraph centrality in complex networks. Phys. Rev. E. 71(5), 56103 (2005)

    CrossRef  MathSciNet  Google Scholar 

  9. Bonacich, P.: Power and centrality: A family of measures. American Journal of Sociology 92(5), 1170–1182 (1987)

    CrossRef  Google Scholar 

  10. Stevenson, K., Zelen, M.: Rethinking centrality: Methods and examples. Social Networks 11(1), 1–37 (1989)

    CrossRef  MathSciNet  Google Scholar 

  11. Estrada, E.: Virtual identification of essential proteins within the protein interaction network of yeast. Proteomics 6(1), 35–40 (2006)

    CrossRef  Google Scholar 

  12. Li, M., Wang, J., Wang, H., Pan, Y.: Essential Proteins Discovery from Weighted Protein Interaction Networks. In: Borodovsky, M., Gogarten, J.P., Przytycka, T.M., Rajasekaran, S. (eds.) ISBRA 2010. LNCS, vol. 6053, pp. 89–100. Springer, Heidelberg (2010)

    CrossRef  Google Scholar 

  13. Xenarios, I., Rice, D.W., Salwinski, L., et al.: DIP: the database of interacting proteins. Nucleic Acids Res. 28(1), 289–291 (2000)

    CrossRef  Google Scholar 

  14. Mewes, H.W., et al.: MIPS: analysis and annotation of proteins from whole genomes in 2005. Nucleic Acids Res. 34(Database issue), D169–D172 (2006)

    CrossRef  Google Scholar 

  15. Cherry, J.M., et al.: SGD: Saccharomyces Genome Database. Nucleic Acids Res. 26(1), 73–79 (1998)

    CrossRef  Google Scholar 

  16. Zhang, R., Lin, Y.: DEG 5.0, a database of essential genes in both prokaryotes and eukaryotes. Nucleic Acids Res. 37(Database issue), D455–D458 (2009)

    CrossRef  Google Scholar 

  17. Saccharomyces Genome Deletion Project, http://www-sequence.stanford.edu/group/yeast_deletion_project

  18. He, X., Zhang, J.: Why do hubs tend to be essential in protein networks? PLoS Genet. 2(6), e88 (2006)

    CrossRef  Google Scholar 

  19. Zotenko, E., Mestre, J., O’Leary, D.P., et al.: Why do hubs in the yeast protein interaction network tend to be essential: reexamining the connection between the network topology and essentiality. PLoS Comput. Biol. 4(8), e1000140 (2008)

    CrossRef  MathSciNet  Google Scholar 

  20. Hart, G.T., Lee, I., Marcotte, E.R.: A high-accuracy consensus map of yeast protein complexes reveals modular nature of gene essentiality. BMC Bioinformatics 8(1), 236 (2007)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wang, H., Li, M., Wang, J., Pan, Y. (2011). A New Method for Identifying Essential Proteins Based on Edge Clustering Coefficient. In: Chen, J., Wang, J., Zelikovsky, A. (eds) Bioinformatics Research and Applications. ISBRA 2011. Lecture Notes in Computer Science(), vol 6674. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21260-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21260-4_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21259-8

  • Online ISBN: 978-3-642-21260-4

  • eBook Packages: Computer ScienceComputer Science (R0)