A Distance for Partially Labeled Trees

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6669)


In a number of practical situations, data have structure and the relations among its component parts need to be coded with suitable data models. Trees are usually utilized for representing data for which hierarchical relations can be defined. This is the case in a number of fields like image analysis, natural language processing, protein structure, or music retrieval, to name a few. In those cases, procedures for comparing trees are very relevant. An approximate tree edit distance algorithm has been introduced for working with trees labeled only at the leaves. In this paper, it has been applied to handwritten character recognition, providing accuracies comparable to those by the most comprehensive search method, being as efficient as the fastest.


Tree edit distance approximate distances qtrees 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bille, P.: A survey on tree edit distance and related problems. Theorical Computer Science 337(1-3), 217–239 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    DasGupta, B., He, X., Jiang, T., Li, M., Tromp, J., Zhang, L.: On distances between phylogenetic trees. In: SODA 1997: Proceedings of the Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 427–436. Society for Industrial and Applied Mathematics, Philadelphia (1997)Google Scholar
  3. 3.
    Finkel, R.A., Bentley, J.L.: Quad trees: A data structure for retrieval on composite keys. Acta Inf. 4, 1–9 (1974)CrossRefzbMATHGoogle Scholar
  4. 4.
    Garris, M.D., Wilkinson, R.A.: Nist special database 3: Handwritten segmented characters. NIST, Gaithersburg, MdGoogle Scholar
  5. 5.
    Habrard, A., Iñesta, J.M., Rizo, D., Sebban, M.: Melody recognition with learned edit distances. In: da Vitoria Lobo, N., Kasparis, T., Roli, F., Kwok, J.T., Georgiopoulos, M., Anagnostopoulos, G.C., Loog, M. (eds.) S+SSPR 2008. LNCS, vol. 5342, pp. 86–96. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  6. 6.
    Isert, C.: The editing distance between trees (1999)Google Scholar
  7. 7.
    Jiang, T., Wang, L., Zhang, K.: Alignment of trees – an alternative to tree edit. Theoretical Computer Science 143(1), 137–148 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Kuboyama, T., Shin, K., Miyahara, T.: A hierarchy of tree edit distance measures. Theoretical Computer Science and its Applications (2005)Google Scholar
  9. 9.
    Lee, C.-M., Hung, L.-J., Chang, M.-S., Shen, C.-B., Tang, C.-Y.: An improved algorithm for the maximum agreement subtree problem. Information Processing Letters 94(5), 211–216 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Marcus, M., Kim, G., Marcinkiewicz, M.A., Macintyre, R., Bies, A., Ferguson, M., Katz, K., Schasberger, B.: The penn treebank: Annotating predicate argument structure. In: ARPA Human Language Technology Workshop, pp. 114–119 (1994)Google Scholar
  11. 11.
    Rizo, D., Iñesta, J.M.: New partially labelled tree similarity measure: a case study. In: Hancock, E.R., Wilson, R.C., Windeatt, T., Ulusoy, I., Escolano, F. (eds.) SSPR&SPR 2010. LNCS, vol. 6218, pp. 296–305. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  12. 12.
    Rizo, D., Lemström, K., Iñesta, J.M.: Tree representation in combined polyphonic music comparison. In: Ystad, S., Kronland-Martinet, R., Jensen, K. (eds.) CMMR 2008. LNCS, vol. 5493, pp. 177–195. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  13. 13.
    Robinson, D.F., Foulds, L.R.: Comparison of phylogenetic trees. Mathematical Biosciences 53(1-2), 131–147 (1981)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Russell, R.B., Barton, G.J.: Multiple protein sequence alignment from tertiary structure comparison: Assignment of global and residue confidence levels. Proteins: Structure, Function, and Bioinformatics 14, 309–323 (2004)CrossRefGoogle Scholar
  15. 15.
    Samet, H.: The quadtree and related hierarchical data structures. ACM Comput. Surv. 16(2), 187–260 (1984)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Selkow, S.M.: The tree-to-tree editing problem. Information Processing Letters 6(6), 184–186 (1977)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Tai, K.-C.: The tree-to-tree correction problem. J. ACM 26(3), 422–433 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Valiente, G.: An efficient bottom-up distance between trees. In: International Symposium on String Processing and Information Retrieval, pp. 212–219. IEEE Computer Society, Los Alamitos (2001)Google Scholar
  19. 19.
    Zhang, K., Shasha, D.: Simple fast algorithms for the editing distance between trees and related problems. SIAM J. Comput. 18(6), 1245–1262 (1989)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Dept. Lenguajes y Sistemas InformáticosUniversidad de AlicanteAlicanteSpain

Personalised recommendations