Skip to main content

Human Activity Recognition from Accelerometer Data Using a Wearable Device

  • Conference paper
Pattern Recognition and Image Analysis (IbPRIA 2011)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6669))

Included in the following conference series:


Activity Recognition is an emerging field of research, born from the larger fields of ubiquitous computing, context-aware computing and multimedia. Recently, recognizing everyday life activities becomes one of the challenges for pervasive computing. In our work, we developed a novel wearable system easy to use and comfortable to bring. Our wearable system is based on a new set of 20 computationally efficient features and the Random Forest classifier. We obtain very encouraging results with classification accuracy of human activities recognition of up to 94%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others


  1. Ravi, N., Nikhil, D., Mysore, P., Littman, M.L.: Activity recognition from accelerometer data. In: IAAI, pp. 1541–1546 (2005)

    Google Scholar 

  2. Bao, L., Intille, S.S.: Activity recognition from user-annotated acceleration data, pp. 1–17. Springer, Heidelberg (2004)

    Google Scholar 

  3. Choudhury, T., Lamarca, A., Legr, L., Rahimi, A., Rea, A., Borriello, G., Hemingway, B., Koscher, K., Lester, J., Wyatt, D., Haehnel, D.: The Mobile Sensing Platform: An Embedded Activity Recognition System. IEEE Pervasive Computing 7, 32–41 (2008)

    Article  Google Scholar 

  4. Lester, J., Choudhury, T., Borriello, G.: A practical approach to recognizing physical activities. In: Fishkin, K.P., Schiele, B., Nixon, P., Quigley, A. (eds.) PERVASIVE 2006. LNCS, vol. 3968, pp. 1–16. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  5. Mannini, A., Sabatini, A.M.: Machine Learning Methods for Classifying Human Physical Activities from on-body sensors. Sensors 10, 1154–1175 (2010)

    Article  Google Scholar 

  6. Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001)

    Article  MATH  Google Scholar 

  7. Krause, A., Siewiorek, D., Smailagic, A., Farrigdon, J.: Unsupervised, dynamic identification of Physiological and Activity Context in Wearable Computing. In: Fensel, D., Sycara, K., Mylopoulos, J. (eds.) ISWC 2003. LNCS, vol. 2870. Springer, Heidelberg (2003)

    Google Scholar 

  8. Huynh, T., Fritz, M., Schiele, B.: Discovery of Activity Patterns using Topic Models. In: UbiComp 2008, pp. 10–19 (2008)

    Google Scholar 

  9. Clarkson, B., Pentland, A.: Unsupervised Clustering of ambulatory audio and video. In: ICASSP 1999, pp. 3037–3040 (1999)

    Google Scholar 

  10. Casale, P., Pujol, O., Radeva, P.: Face-to-Face Social Activity Detection Using Data Collected with a Wearable Device. In: Araujo, H., Mendonça, A.M., Pinho, A.J., Torres, M.I. (eds.) IbPRIA 2009. LNCS, vol. 5524, pp. 56–63. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations


Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Casale, P., Pujol, O., Radeva, P. (2011). Human Activity Recognition from Accelerometer Data Using a Wearable Device. In: Vitrià, J., Sanches, J.M., Hernández, M. (eds) Pattern Recognition and Image Analysis. IbPRIA 2011. Lecture Notes in Computer Science, vol 6669. Springer, Berlin, Heidelberg.

Download citation

  • DOI:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21256-7

  • Online ISBN: 978-3-642-21257-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics