Skip to main content

Human Activity Recognition from Accelerometer Data Using a Wearable Device

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNIP,volume 6669)

Abstract

Activity Recognition is an emerging field of research, born from the larger fields of ubiquitous computing, context-aware computing and multimedia. Recently, recognizing everyday life activities becomes one of the challenges for pervasive computing. In our work, we developed a novel wearable system easy to use and comfortable to bring. Our wearable system is based on a new set of 20 computationally efficient features and the Random Forest classifier. We obtain very encouraging results with classification accuracy of human activities recognition of up to 94%.

Keywords

  • Physical Activity Recognition
  • Wearable Computing
  • Pervasive Computing

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-21257-4_36
  • Chapter length: 8 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   119.00
Price excludes VAT (USA)
  • ISBN: 978-3-642-21257-4
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ravi, N., Nikhil, D., Mysore, P., Littman, M.L.: Activity recognition from accelerometer data. In: IAAI, pp. 1541–1546 (2005)

    Google Scholar 

  2. Bao, L., Intille, S.S.: Activity recognition from user-annotated acceleration data, pp. 1–17. Springer, Heidelberg (2004)

    Google Scholar 

  3. Choudhury, T., Lamarca, A., Legr, L., Rahimi, A., Rea, A., Borriello, G., Hemingway, B., Koscher, K., Lester, J., Wyatt, D., Haehnel, D.: The Mobile Sensing Platform: An Embedded Activity Recognition System. IEEE Pervasive Computing 7, 32–41 (2008)

    CrossRef  Google Scholar 

  4. Lester, J., Choudhury, T., Borriello, G.: A practical approach to recognizing physical activities. In: Fishkin, K.P., Schiele, B., Nixon, P., Quigley, A. (eds.) PERVASIVE 2006. LNCS, vol. 3968, pp. 1–16. Springer, Heidelberg (2006)

    CrossRef  Google Scholar 

  5. Mannini, A., Sabatini, A.M.: Machine Learning Methods for Classifying Human Physical Activities from on-body sensors. Sensors 10, 1154–1175 (2010)

    CrossRef  Google Scholar 

  6. Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001)

    CrossRef  MATH  Google Scholar 

  7. Krause, A., Siewiorek, D., Smailagic, A., Farrigdon, J.: Unsupervised, dynamic identification of Physiological and Activity Context in Wearable Computing. In: Fensel, D., Sycara, K., Mylopoulos, J. (eds.) ISWC 2003. LNCS, vol. 2870. Springer, Heidelberg (2003)

    Google Scholar 

  8. Huynh, T., Fritz, M., Schiele, B.: Discovery of Activity Patterns using Topic Models. In: UbiComp 2008, pp. 10–19 (2008)

    Google Scholar 

  9. Clarkson, B., Pentland, A.: Unsupervised Clustering of ambulatory audio and video. In: ICASSP 1999, pp. 3037–3040 (1999)

    Google Scholar 

  10. Casale, P., Pujol, O., Radeva, P.: Face-to-Face Social Activity Detection Using Data Collected with a Wearable Device. In: Araujo, H., Mendonça, A.M., Pinho, A.J., Torres, M.I. (eds.) IbPRIA 2009. LNCS, vol. 5524, pp. 56–63. Springer, Heidelberg (2009)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Casale, P., Pujol, O., Radeva, P. (2011). Human Activity Recognition from Accelerometer Data Using a Wearable Device. In: Vitrià, J., Sanches, J.M., Hernández, M. (eds) Pattern Recognition and Image Analysis. IbPRIA 2011. Lecture Notes in Computer Science, vol 6669. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21257-4_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21257-4_36

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21256-7

  • Online ISBN: 978-3-642-21257-4

  • eBook Packages: Computer ScienceComputer Science (R0)