A Region Segmentation Method for Colonoscopy Images Using a Model of Polyp Appearance

  • Jorge Bernal
  • Javier Sánchez
  • Fernando Vilariño
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6669)


This work aims at the segmentation of colonoscopy images into a minimum number of informative regions. Our method performs in a way such, if a polyp is present in the image, it will be exclusively and totally contained in a single region. This result can be used in later stages to classify regions as polyp-containing candidates. The output of the algorithm also defines which regions can be considered as non-informative. The algorithm starts with a high number of initial regions and merges them taking into account the model of polyp appearance obtained from available data. The results show that our segmentations of polyp regions are more accurate than state-of-the-art methods.


Colonoscopy Polyp Detection Region Merging Region Segmentation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Tresca, A.: The Stages of Colon and Rectal Cancer. New York Times (, p. 1 (2010)Google Scholar
  2. 2.
    Hassinger, J.P., Holubar, S.D., et al.: Effectiveness of a Multimedia-Based Educational Intervention for Improving Colon Cancer Literacy in Screening Colonoscopy Patients. Diseases of the Colon & Rectum 53(9), 1301 (2010)CrossRefGoogle Scholar
  3. 3.
    Bernal, J., Sánchez, J., Vilariño, F.: Current challenges on polyp detection in colonoscopy videos: From region segmentation to region classification. a pattern recognition-based approach. In: Proceedings of the 2nd International Workshop on Medical Image Analysis and Description for Diagnosis Systems - MIAD 2011, Rome, Italy (January 2011) (in press)Google Scholar
  4. 4.
    Bernal, J., Sánchez, J., Vilariño, F.: Reduction of Pattern Search Area in Colonoscopy Images by Merging Non-Informative Regions. In: Proceedings of the XXVIII Congreso Anual de la Sociedad Española de Ingeniería Biomédica, Madrid, Spain (November 2010) (in press)Google Scholar
  5. 5.
    Ameling, S., Wirth, S., Paulus, D.: Methods for Polyp Detection in Colonoscopy Videos: A Review. Inst. für Computervisualistik (2009)Google Scholar
  6. 6.
    Hwang, S., Oh, J., Tavanapong, W., Wong, J., De Groen, P.: Automatic polyp region segmentation for colonoscopy images using watershed algorithm and ellipse segmentation. Progress in biomedical optics and imaging 8(33) (2007)Google Scholar
  7. 7.
    Riaz, F., Ribeiro, M.D., Coimbra, M.T.: Quantitative comparison of segmentation methods for in-body images. In: Annual International Conference of the IEEE, Engineering in Medicine and Biology Society, EMBC 2009, pp. 5785–5788 (2009)Google Scholar
  8. 8.
    Forsyth, D.A., Ponce, J.: Computer vision: a modern approach. Prentice Hall Professional Technical Reference (2002)Google Scholar
  9. 9.
    Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence 22(8), 888–905 (2002)Google Scholar
  10. 10.
    Cheng, Y.: Mean shift, mode seeking, and clustering. IEEE Transactions on Pattern Analysis and Machine Intelligence 17(8), 790–799 (2002)CrossRefGoogle Scholar
  11. 11.
    Vincent, L., Soille, P.: Watersheds in digital spaces: an efficient algorithm based on immersion simulations. IEEE Transactions on Pattern Analysis and Machine Intelligence 13(6), 583–598 (1991)CrossRefGoogle Scholar
  12. 12.
    López, A.M., Lumbreras, F., et al.: Evaluation of methods for ridge and valley detection. IEEE Transactions on Pattern Analysis and Machine Intelligence 21(4), 327–335 (1999)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Jorge Bernal
    • 1
  • Javier Sánchez
    • 1
  • Fernando Vilariño
    • 1
  1. 1.Computer Vision Center and Computer Science DepartmentCampus Universitat Autònoma de BarcelonaBarcelonaSpain

Personalised recommendations