Automatic HyperParameter Estimation in fMRI

  • David Afonso
  • Patrícia Figueiredo
  • João Miguel Sanches
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6669)


Maximum a posteriori (MAP) in the scope of the Bayesian framework is a common criterion used in a large number of estimation and decision problems. In image reconstruction problems, typically, the image to be estimated is modeled as a Markov Random Fields (MRF) described by a Gibbs distribution. In this case, the Gibbs energy depends on a multiplicative coefficient, called hyperparameter, that is usually manually tuned [14] in a trial and error basis.

In this paper we propose an automatic hyperparameter estimation method designed in the scope of functional Magnetic Resonance Imaging (fMRI) to identify activated brain areas based on Blood Oxygen Level Dependent (BOLD) signal.

This problem is formulated as classical binary detection problem in a Bayesian framework where the estimation and inference steps are joined together. The prior terms, incorporating the a priori physiological knowledge about the Hemodynamic Response Function (HRF), drift and spatial correlation across the brain (using edge preserving priors), are automatically tuned with the new proposed method.

Results on real and synthetic data are presented and compared against the conventional General Linear Model (GLM) approach.


HyperParameter Estimation Bayesian fMRI HRF 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Afonso, D., Sanches, J., Lauterbach, M.: Joint bayesian detection of brain activated regions and local hrf estimation in functional mri. In: Proceedings IEEE ICASSP 2008, IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), Las Vegas, USA, March 30 - April 4 (2008)Google Scholar
  2. 2.
    Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via graph cuts. IEEE Trans. Pattern Anal. Mach. Intell. 23(11), 1222–1239 (2001)CrossRefGoogle Scholar
  3. 3.
    Ciuciu, P., Poline, J.B., Marrelec, G., Idier, J., Pallier, C., Benali, H.: Unsupervised robust non-parametric estimation of the hemodynamic response function for any fmri experiment. IEEE Trans. Med. Imaging 22(10), 1235–1251 (2003)CrossRefGoogle Scholar
  4. 4.
    Cruz, P., ao Teixeira, J., Figueiredo, P.: Reproducibility of a rapid visual brain mapping protocol. In: Proc. of the 15th Annual Meeting of the OHBM, San Francisco, US (June 2009)Google Scholar
  5. 5.
    Friston, K.J., Fletcher, P., Josephs, O., Holmes, A., Rugg, M.D., Turner, R.: Event-related fMRI: characterizing differential responses. Neuroimage 7(1), 30–40 (1998)CrossRefGoogle Scholar
  6. 6.
    Friston, K., Penny, W., Phillips, C., Kiebel, S., Hinton, G., Ashburner, J.: Classical and Bayesian inference in neuroimaging: Theory. NeuroImage 16, 465–483 (2002)CrossRefGoogle Scholar
  7. 7.
    Geman, S., Geman, D.: Stochastic relaxation, gibbs distributions, and the bayesian restoration of images. IEEE Trans. Pattern Analysis and Machine Intelligence 6, 721–741 (1984)CrossRefzbMATHGoogle Scholar
  8. 8.
    Goutte, C., Nielsen, F.Å., Hansen, L.K.: Modelling the haemodynamic response in fmri with smooth fir filters. IEEE Trans. Med. Imaging 19(12), 1188–1201 (2000)CrossRefGoogle Scholar
  9. 9.
    Jezzard, P., Matthews, P.M., Smith, S.M.: Functional magnetic resonance imaging: An introduction to methods. Oxford Medical Publications (2006)Google Scholar
  10. 10.
    Friston, K.J.: Analyzing brain images: Principles and overview. In: Frackowiak, R.S.J., Friston, K.J., Frith, C., Dolan, R., Mazziotta, J.C. (eds.) Human Brain Function, pp. 25–41. Academic Press, USA (1997)Google Scholar
  11. 11.
    Friston, K.J., Holmes, A.P., Worsley, K.J., Poline, J.B., Frith, C., Frackowiak, R.S.J.: Statistical Parametric Maps in Functional Imaging: A General Linear Approach. Human Brain Mapping 2, 189–210 (1995)CrossRefGoogle Scholar
  12. 12.
    Makni, S., Ciuciu, P., Idier, J., Poline, J.B.: Joint detection-estimation of brain activity in functional mri: A multichannel deconvolution solution. IEEE Transactions on Acoustics, Speech, and Signal Processing 53(9), 3488–3502 (2005)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Marrelec, G., Benali, H., Ciuciu, P., Pélégrini-Issac, M., Poline, J.B.: Robust Bayesian estimation of the hemodynamic response function in event-related BOLD fMRI using basic physiological information. Human Brain Mapping 19, 1–17 (2003)CrossRefGoogle Scholar
  14. 14.
    Moon, T.K., Stirling, W.C.: Mathematical methods and algorithms for signal processing. Prentice-Hall, Englewood Cliffs (2000)Google Scholar
  15. 15.
    Sanches, J., Marques, J.S.: A map estimation algorithm using IIR recursive filters. In: Proceedings International Workshop on Energy Minimization Methods in Computer Vision and Pattern Recognition, Lisbon, Portugal (July 2003)Google Scholar
  16. 16.
    Woolrich, M.W., Jenkinson, M., Brady, J.M., Smith, S.M.: Fully bayesian spatio-temporal modeling of fmri data. IEEE Trans. Med. Imaging 23(2), 213–231 (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • David Afonso
    • 1
  • Patrícia Figueiredo
    • 1
  • João Miguel Sanches
    • 1
  1. 1.Institute For Systems and RoboticsInstituto Superior TécnicoLisboaPortugal

Personalised recommendations