Abstract
This paper proposes rule formats for Structural Operational Semantics guaranteeing that certain binary operators are left distributive with respect to a set of binary operators. Examples of left-distributivity laws from the literature are shown to be instances of the provided formats.
Keywords
- Composition Operator
- Rule Format
- Operational Semantic
- Parallel Composition
- Process Algebra
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
The work of Aceto, Cimini and Ingolfsdottir has been partially supported by the projects ‘New Developments in Operational Semantics’ (nr. 080039021) and ‘Meta-theory of Algebraic Process Theories’ (nr. 100014021) of the Icelandic Research Fund. The work on the paper was partly carried out while Luca Aceto held an Abel Extraordinary Chair at Universidad Complutense de Madrid, Spain, supported by the NILS Mobility Project.
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsPreview
Unable to display preview. Download preview PDF.
References
Aceto, L., Cimini, M., Ingolfsdottir, A., Mousavi, M.R., Reniers, M.A.: Rule formats for distributivity. Technical Report CSR-10-16, TU/Eindhoven (2010)
Aceto, L., Ingolfsdottir, A., Mousavi, M.R., Reniers, M.A.: Algebraic properties for free! Bulletin of the European Association for Theoretical Computer Science 99, 81–104 (2009); Columns: Concurrency
Aceto, L., Birgisson, A., Ingolfsdottir, A., Mousavi, M.R., Reniers, M.A.: Rule formats for determinism and idempotence. In: Arbab, F., Sirjani, M. (eds.) FSEN 2009. LNCS, vol. 5961, pp. 146–161. Springer, Heidelberg (2010)
Aceto, L., Bloom, B., Vaandrager, F.W.: Turning SOS rules into equations. Inf. Comput. 111(1), 1–52 (1994)
Aceto, L., Cimini, M., Ingolfsdottir, A., Mousavi, M.R., Reniers, M.A.: On rule formats for zero and unit elements. In: Proceedings of the 26th Conference on the Mathematical Foundations of Programming Semantics (MFPS XXVI), Ottawa, Canada. Electronic Notes in Theoretical Computer Science, vol. 265, pp. 145–160. Elsevier B.V., The Netherlands (2010)
Aceto, L., Fokkink, W., Ingolfsdottir, A., Luttik, B.: Finite equational bases in process algebra: Results and open questions. In: Middeldorp, A., van Oostrom, V., van Raamsdonk, F., de Vrijer, R. (eds.) Processes, Terms and Cycles: Steps on the Road to Infinity. LNCS, vol. 3838, pp. 338–367. Springer, Heidelberg (2005)
Aceto, L., Fokkink, W., Verhoef, C.: Structural operational semantics. In: Handbook of Process Algebra, pp. 197–292. Elsevier, Amsterdam (2001)
Aceto, L., Ingolfsdottir, A., Mousavi, M.R., Reniers, M.A.: Rule formats for unit elements. In: van Leeuwen, J., Muscholl, A., Peleg, D., Pokorný, J., Rumpe, B. (eds.) SOFSEM 2010. LNCS, vol. 5901, pp. 141–152. Springer, Heidelberg (2010)
Baeten, J., Bergstra, J.: Mode transfer in process algebra. Technical Report Report CSR 00–01, Eindhoven University of Technology (2000)
Baeten, J., Bergstra, J., Klop, J.W.: Syntax and defining equations for an interrupt mechanism in process algebra. Fundamenta Informaticae IX(2), 127–168 (1986)
Baeten, J., Basten, T., Reniers, M.A.: Process Algebra: Equational Theories of Communicating Processes. Cambridge Tracts in Theoretical Computer Science, vol. 50. Cambridge University Press, Cambridge (2009)
Baeten, J., Mauw, S.: Delayed choice: An operator for joining Message Sequence Charts. In: Hogrefe, D., Leue, S. (eds.) Formal Description Techniques VII, Proceedings of the 7th IFIP WG6.1 International Conference on Formal Description Techniques, Berne, Switzerland. IFIP Conference Proceedings, vol. 6, pp. 340–354. Chapman & Hall, Boca Raton (1995)
Bergstra, J., Klop, J.W.: Fixed point semantics in process algebras. Report IW 206, Mathematisch Centrum, Amsterdam (1982)
Brinksma, E.: A tutorial on LOTOS. In: Proceedings of the IFIP WG6.1 Fifth International Conference on Protocol Specification, Testing and Verification V, pp. 171–194. North-Holland Publishing Co., Amsterdam (1985)
Cranen, S., Mousavi, M.R., Reniers, M.A.: A rule format for associativity. In: van Breugel, F., Chechik, M. (eds.) CONCUR 2008. LNCS, vol. 5201, pp. 447–461. Springer, Heidelberg (2008)
Hoare, C.: Communicating Sequential Processes. Prentice-Hall International, Englewood Cliffs (1985)
Milner, R.: Communication and Concurrency. Prentice-Hall, Inc., Upper Saddle River (1989)
Moller, F.: The importance of the left merge operator in process algebras. In: Paterson, M. (ed.) ICALP 1990. LNCS, vol. 443, pp. 752–764. Springer, Heidelberg (1990)
Mousavi, M.R., Reniers, M.A., Groote, J.F.: A syntactic commutativity format for SOS. Information Processing Letters 93, 217–223 (2005)
Mousavi, M.R., Reniers, M.A., Groote, J.F.: SOS formats and meta-theory: 20 years after. Theor. Comput. Sci. 373(3), 238–272 (2007)
Nicollin, X., Sifakis, J.: The algebra of timed processes, ATP: Theory and application. Information and Computation 114(1), 131–178 (1994)
Plotkin, G.D.: A structural approach to operational semantics. J. Log. Algebr. Program. 60-61, 17–139 (2004)
Przymusinski, T.: The well-founded semantics coincides with the three-valued stable semantics. Fundamenta Informaticae 13(4), 445–463 (1990)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Aceto, L., Cimini, M., Ingolfsdottir, A., Mousavi, M.R., Reniers, M.A. (2011). Rule Formats for Distributivity. In: Dediu, AH., Inenaga, S., Martín-Vide, C. (eds) Language and Automata Theory and Applications. LATA 2011. Lecture Notes in Computer Science, vol 6638. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21254-3_5
Download citation
DOI: https://doi.org/10.1007/978-3-642-21254-3_5
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-21253-6
Online ISBN: 978-3-642-21254-3
eBook Packages: Computer ScienceComputer Science (R0)