Rule Formats for Distributivity

  • Luca Aceto
  • Matteo Cimini
  • Anna Ingolfsdottir
  • Mohammad Reza Mousavi
  • Michel A. Reniers
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6638)


This paper proposes rule formats for Structural Operational Semantics guaranteeing that certain binary operators are left distributive with respect to a set of binary operators. Examples of left-distributivity laws from the literature are shown to be instances of the provided formats.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aceto, L., Cimini, M., Ingolfsdottir, A., Mousavi, M.R., Reniers, M.A.: Rule formats for distributivity. Technical Report CSR-10-16, TU/Eindhoven (2010)Google Scholar
  2. 2.
    Aceto, L., Ingolfsdottir, A., Mousavi, M.R., Reniers, M.A.: Algebraic properties for free! Bulletin of the European Association for Theoretical Computer Science 99, 81–104 (2009); Columns: ConcurrencyMATHGoogle Scholar
  3. 3.
    Aceto, L., Birgisson, A., Ingolfsdottir, A., Mousavi, M.R., Reniers, M.A.: Rule formats for determinism and idempotence. In: Arbab, F., Sirjani, M. (eds.) FSEN 2009. LNCS, vol. 5961, pp. 146–161. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  4. 4.
    Aceto, L., Bloom, B., Vaandrager, F.W.: Turning SOS rules into equations. Inf. Comput. 111(1), 1–52 (1994)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Aceto, L., Cimini, M., Ingolfsdottir, A., Mousavi, M.R., Reniers, M.A.: On rule formats for zero and unit elements. In: Proceedings of the 26th Conference on the Mathematical Foundations of Programming Semantics (MFPS XXVI), Ottawa, Canada. Electronic Notes in Theoretical Computer Science, vol. 265, pp. 145–160. Elsevier B.V., The Netherlands (2010)Google Scholar
  6. 6.
    Aceto, L., Fokkink, W., Ingolfsdottir, A., Luttik, B.: Finite equational bases in process algebra: Results and open questions. In: Middeldorp, A., van Oostrom, V., van Raamsdonk, F., de Vrijer, R. (eds.) Processes, Terms and Cycles: Steps on the Road to Infinity. LNCS, vol. 3838, pp. 338–367. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  7. 7.
    Aceto, L., Fokkink, W., Verhoef, C.: Structural operational semantics. In: Handbook of Process Algebra, pp. 197–292. Elsevier, Amsterdam (2001)CrossRefGoogle Scholar
  8. 8.
    Aceto, L., Ingolfsdottir, A., Mousavi, M.R., Reniers, M.A.: Rule formats for unit elements. In: van Leeuwen, J., Muscholl, A., Peleg, D., Pokorný, J., Rumpe, B. (eds.) SOFSEM 2010. LNCS, vol. 5901, pp. 141–152. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  9. 9.
    Baeten, J., Bergstra, J.: Mode transfer in process algebra. Technical Report Report CSR 00–01, Eindhoven University of Technology (2000)Google Scholar
  10. 10.
    Baeten, J., Bergstra, J., Klop, J.W.: Syntax and defining equations for an interrupt mechanism in process algebra. Fundamenta Informaticae IX(2), 127–168 (1986)MathSciNetMATHGoogle Scholar
  11. 11.
    Baeten, J., Basten, T., Reniers, M.A.: Process Algebra: Equational Theories of Communicating Processes. Cambridge Tracts in Theoretical Computer Science, vol. 50. Cambridge University Press, Cambridge (2009)CrossRefMATHGoogle Scholar
  12. 12.
    Baeten, J., Mauw, S.: Delayed choice: An operator for joining Message Sequence Charts. In: Hogrefe, D., Leue, S. (eds.) Formal Description Techniques VII, Proceedings of the 7th IFIP WG6.1 International Conference on Formal Description Techniques, Berne, Switzerland. IFIP Conference Proceedings, vol. 6, pp. 340–354. Chapman & Hall, Boca Raton (1995)CrossRefGoogle Scholar
  13. 13.
    Bergstra, J., Klop, J.W.: Fixed point semantics in process algebras. Report IW 206, Mathematisch Centrum, Amsterdam (1982)Google Scholar
  14. 14.
    Brinksma, E.: A tutorial on LOTOS. In: Proceedings of the IFIP WG6.1 Fifth International Conference on Protocol Specification, Testing and Verification V, pp. 171–194. North-Holland Publishing Co., Amsterdam (1985)Google Scholar
  15. 15.
    Cranen, S., Mousavi, M.R., Reniers, M.A.: A rule format for associativity. In: van Breugel, F., Chechik, M. (eds.) CONCUR 2008. LNCS, vol. 5201, pp. 447–461. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  16. 16.
    Hoare, C.: Communicating Sequential Processes. Prentice-Hall International, Englewood Cliffs (1985)MATHGoogle Scholar
  17. 17.
    Milner, R.: Communication and Concurrency. Prentice-Hall, Inc., Upper Saddle River (1989)MATHGoogle Scholar
  18. 18.
    Moller, F.: The importance of the left merge operator in process algebras. In: Paterson, M. (ed.) ICALP 1990. LNCS, vol. 443, pp. 752–764. Springer, Heidelberg (1990)CrossRefGoogle Scholar
  19. 19.
    Mousavi, M.R., Reniers, M.A., Groote, J.F.: A syntactic commutativity format for SOS. Information Processing Letters 93, 217–223 (2005)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Mousavi, M.R., Reniers, M.A., Groote, J.F.: SOS formats and meta-theory: 20 years after. Theor. Comput. Sci. 373(3), 238–272 (2007)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Nicollin, X., Sifakis, J.: The algebra of timed processes, ATP: Theory and application. Information and Computation 114(1), 131–178 (1994)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Plotkin, G.D.: A structural approach to operational semantics. J. Log. Algebr. Program. 60-61, 17–139 (2004)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Przymusinski, T.: The well-founded semantics coincides with the three-valued stable semantics. Fundamenta Informaticae 13(4), 445–463 (1990)MathSciNetMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Luca Aceto
    • 1
  • Matteo Cimini
    • 1
  • Anna Ingolfsdottir
    • 1
  • Mohammad Reza Mousavi
    • 2
  • Michel A. Reniers
    • 3
  1. 1.ICE-TCS, School of Computer ScienceReykjavik UniversityReykjavikIceland
  2. 2.Department of Computer ScienceEindhoven University of TechnologyMB  EindhovenThe Netherlands
  3. 3.Department of Mechanical EngineeringEindhoven University of TechnologyMB  EindhovenThe Netherlands

Personalised recommendations