Advertisement

Echinoderms as Blueprints for Biocalcification: Regulation of Skeletogenic Genes and Matrices

  • Valeria MatrangaEmail author
  • Rosa Bonaventura
  • Caterina Costa
  • Konstantinos Karakostis
  • Annalisa Pinsino
  • Roberta Russo
  • Francesca Zito
Chapter
Part of the Progress in Molecular and Subcellular Biology book series (PMSB, volume 52)

Abstract

Echinoderms have an extensive endoskeleton composed of magnesian calcite, a form of calcium carbonate that contains small amounts of magnesium carbonate and occluded matrix proteins. Adult sea urchins have several calcified structures, including test, teeth, and spines, composed of numerous ossicles which form a three-dimensional meshwork of mineral trabeculae, the stereom. The biomineral development begins in 24-hour-old embryos within the primary mesenchyme cells (PMCs), the only cells producing a set of necessary matrix proteins. The deposition of the biomineral occurs in a privileged extracellular space produced by the fused filopodial processes of the PMCs. We showed for the first time that signals from ectoderm cells overlying PMCs play an important role in the regulation of biomineralization-related genes. It is believed that growth factors are produced by ectoderm cells and released into the blastocoel where they interact with cognate receptor tyrosine kinases restricted to PMCs, which activate signaling cascades regulating the expression of biomineralization-related genes. We demonstrated the implication of a TGF-beta family factor by a perturbation model in which skeleton elongation was indirectly blocked by monoclonal antibodies to an extracellular matrix (ECM) protein located on the apical surface of ectoderm. Thus, it was inferred that interfering with the binding of the ECM ligand, a member of the discoidin family, to its cell surface receptor, a βC integrin, disrupts the ectodermal cell signaling cascade, resulting in reduced or aberrant skeletons. During the last few years, we analyzed the expression of biomineralization-related genes in other examples of experimentally induced skeleton malformations, produced by the exposure to toxic metals, such as Cd and Mn or ionizing radiations, such as UV-B and X-rays. Besides the obvious toxicological implication, since the mis-expression of spicule matrix genes paralleled skeleton defects, we believe that by means of these studies we can dissect the molecular steps taking place and possibly understand the physiological events regulating embryonic biomineralization.

Keywords

Ectodermal Cell Magnesium Carbonate Magnesian Calcite Amorphous Calcium Carbonate Ectoderm Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work was supported by the BIOMINTEC Project (European Commission N° PITN-GA-2008-215507 grant). Authors are indebted to Prof. Frederic Marin for access to and help in the use of the SEM at the UMR 5561 CNRS BiogÕosciences, UniversitÕ de Bourgogne, 21000 Dijon, France. Authors thank Mr. Mauro Biondo for his valuable technical assistance.

References

  1. Addadi L, Raz S, Weiner S (2003) Taking advantage of disorder: amorphous calcium carbonate and its roles in biomineralization. Adv Mat 15:959–970CrossRefGoogle Scholar
  2. Agca C, Klein WH, Venutia JM (2009) Respecification of ectoderm and altered Nodal expression in sea urchin embryos after cobalt and nickel treatment. Mech Dev 126:430–442PubMedCrossRefGoogle Scholar
  3. Aizenberg J, Lambert G, Addadi L, Weiner S (1996) Stabilization of amorphous calcium carbonate by specialized macromolecules in biological and synthetic precipitates. Adv Mat 8:222–226CrossRefGoogle Scholar
  4. Alvares K, Dixit SN, Lux E, Veis A (2009) Echinoderm Phosphorylated Matrix Proteins UTMP16 and UTMP19 Have Different Functions in Sea Urchin Tooth Mineralization. J Biol Chem 284:26149–26160PubMedCrossRefGoogle Scholar
  5. ATSDR (2008) Draft toxicological profile for manganese. Agency for toxic substances and disease registry. Division of toxicology and environmental medicine/applied toxicology branch, Atlanta, Georgia. Available via DIALOG. http://www.atsdr.cdc.gov/tox profiles/tp151-p.pdf
  6. Banaszak AT, Lesser MP (2009) Effects of solar ultraviolet radiation on coral reef organisms. Photochem Photobiol Sci 8:1276–1294PubMedCrossRefGoogle Scholar
  7. Batel R, Fafandjel M, Blumbach B, Schröder HC, Hassanein HM, Müller IM, Müller WE (1998) Expression of the human XPB/ERCC-3 excision repair gene-homolog in the sponge Geodia cydonium after exposure to ultraviolet radiation. Mutat Res 409:123–133PubMedGoogle Scholar
  8. Beniash E, Aizenberg J, Addadi L et al (1997) Amorphous calcium carbonate transforms into calcite durino sea urchin larval spicule growth. Proc R Soc Lond B 264:461–465CrossRefGoogle Scholar
  9. Berman A, Hanson J, Leiserowitz L, Koetzle TF, Weiner S, Addadi L (1993) Biological control of crystal texture: A widespread strategy for adapting crystal properties to function. Science 259:776–779PubMedCrossRefGoogle Scholar
  10. Bisgrove BW, Andrews ME, Raff RA (1991) Fibropellins, products of an EGF repeat-containing gene, form a unique extracellular matrix structure that surrounds the sea urchin embryo. Dev Biol 146:89–99PubMedCrossRefGoogle Scholar
  11. Bonaventura R, Poma V, Costa C, Matranga V (2005) UVB radiation prevents skeleton growth and stimulates the expression of stress markers in sea urchin embryos. Biochem Bioph Res Co 328:150–157CrossRefGoogle Scholar
  12. Bonaventura R, Poma V, Russo R, Zito F, Matranga V (2006) Effects of UV-B radiation on the development and hsp 70 expression in sea urchin cleavage embryos. Mar Biol 149:79–86CrossRefGoogle Scholar
  13. Candia Carnevali MD, Thorndyke MC, Matranga V (2009) Regenerating echinoderms: a promise to understand stem cells potential. In: Stem cells in marine organisms (eds: Rinkevich B, Matranga V) Springer, New York, pp 165–186Google Scholar
  14. Chapman PM (2002) Integrating toxicology and ecology: putting the "eco" into ecotoxicology. Mar Poll Bull 44:7–15CrossRefGoogle Scholar
  15. CICAD (2004) Manganese and its compounds: environmental aspects. Concise international chemical assessment document63. WHO, Geneva, Switzerland Available via DIALOG. http://www.who.int/ipcs/publications/cicad/cicad63_rev_1.pdf
  16. Costa C, Cavalcante C, Zito F, Yokota Y, Matranga V (2010) Phylogenetic analysis an homology modelling of Paracentrotus lividus nectin. Mol Divers 14:653–665PubMedCrossRefGoogle Scholar
  17. Coteur G, Gosselin P, Wantier P, Chambost-Manciet Y, Danis B, Pernet P, Warnau M, Dubois P (2003) Echinoderms as bioindicators, bioassays, and impact assessment tools of sediment-associated metals and PCBs in the North Sea. Arch Environ Contam Toxicol 45:190–202PubMedCrossRefGoogle Scholar
  18. Daly MJ (2009) A new perspective on radiation resistance based on Deinococcus radiodurans. Nat Rev Microbiol 7:237–244PubMedCrossRefGoogle Scholar
  19. Drager BJ, Harkey MA, Iwata M, Whitele AH (1989) The expression of embryonic primary mesenchyme genes of the sea urchin, Strongylocentrotus purpuratus, in the adult skeletogenic tissues of this and other species of echinoderms. Dev Biol 133:14–23PubMedCrossRefGoogle Scholar
  20. Duffus JH (2002) Effect of Cr(VI) exposure on sperm quality. Ann Occup HygMar 46:269–270CrossRefGoogle Scholar
  21. Dunne RP, Brown BE (1996) Penetration of solar UVB radiation in shallow tropical waters and its potential biological effects on coral reefs; results from the central Indian Ocean and Andaman Sea. Mar Ecol Prog Ser 144:109–118CrossRefGoogle Scholar
  22. Dupon S, Ortega-Martinez O, Thorndyke M (2010) Impact of near-future ocean acidification on echinoderms. Ecotoxicology 19:449–462CrossRefGoogle Scholar
  23. Ettensohn CA (2009) Lessons from a gene regulatory network: echinoderm skeletogenesis provides insights into evolution, plasticity and morphogenesis. Development 136:11–21PubMedCrossRefGoogle Scholar
  24. Falini G, Albeck S, Weiner S, Addadi L (1996) Control of aragonite or calcite polymorphism by mollusk shell macromolecules. Science 271:67–69CrossRefGoogle Scholar
  25. Filosto S, Roccheri MC, Bonaventura R, Matranga V (2008) Environmentally relevant cadmium concentrations affect development and induce apoptosis of Paracentrotus lividus larvae cultured in vitro. Cell Biol Toxicol 24:603–610PubMedCrossRefGoogle Scholar
  26. Frankel RB, Bazylinski DA (2003) Biologically induced mineralization by bacteria. Rev Mineral Geochem 54:95–114CrossRefGoogle Scholar
  27. Gattuso JP, Gao K, Lee K, Rost B, Schulz KG (2010) Approaches and tools to manipulate the carbonate chemistry. In: Riebesell U, Fabry VJ, Hansson L, Gattuso J-P (eds) Guide to best practices for ocean acidification research and data reporting. Publications Office of the European Union, Luxembourg, pp 41–52Google Scholar
  28. Gerber GB, Leonard A, Hantson Ph (2002) Carcinogenicity, muta- genicity and teratogenicity of manganese compounds. Crit Rev Oncol Hematol 42:25–34PubMedCrossRefGoogle Scholar
  29. Guss KA, Ettensohn CA (1997) Skeletal morphogenesis in the sea urchin embryo: regulation of primary mesenchyme gene expression and skeletal rod growth by ectoderm-derived cues. Development 124:1899–1908PubMedGoogle Scholar
  30. Hader DP (2000) Effects of solar UV-B radiation on aquatic ecosystems. Adv Space Res 26:2029–2040PubMedCrossRefGoogle Scholar
  31. Hardin J, Coffman JA, Black SD, McClay DR (1992) Commitment along the dorsoventral axis of the sea urchin embryo is altered in response to NiCl2. Development 116:671–685PubMedGoogle Scholar
  32. Heatfield BM, Travis DF (1975) Ultrastructural studies of regenerating spines of the sea urchin Strongylocentrotus purpuratus. II. Cells with spherules. J Morphol 145:51–72PubMedCrossRefGoogle Scholar
  33. Hodor PG, Illies MR, Broadley S, Ettensohn CA (2000) Cell-substrate interactions during sea urchin gastrulation: migrating primary mesenchyme cells interact with and align extracellular matrix fibers that contain ECM3, a molecule with NG2-like and multiple calcium-binding domains. Dev Biol 222:181–194PubMedCrossRefGoogle Scholar
  34. Holzinger A, Lütz C (2006) Algae and UV irradiation: effects on ultrastructure and related metabolic functions. Micron 37(190–606):207Google Scholar
  35. Hörstadius S (1939) The mechanics of sea urchin development, studied by operative methods. Biol Rev 14:132–179CrossRefGoogle Scholar
  36. Ingersoll EP, Wilt FH (1998) Matrix metalloproteinase inhibitors disrupt spicule formation by primary mesenchyme cells in the sea urchin embryo. Dev Biol 196:95–106PubMedCrossRefGoogle Scholar
  37. Kato T (2000) Polymer/calcium carbonate layered thin-film composites. Adv Mater 12:1543–1546CrossRefGoogle Scholar
  38. Kato KH, Abe T, Nakashima S, Matranga V, Zito F, Yokota Y (2004) ‘Nectosome’: a novel cytoplasmic vesicle containing nectin in the egg of the sea urchin, Temnopleurus hardwickii. Develop Growth Differ 46:239–247CrossRefGoogle Scholar
  39. Katow H (1995) Pamlin, a primary mesenchyme cell adhesion protein, in the basal lamina of the sea urchin embryo. Exp Cell Res 218:469–478PubMedCrossRefGoogle Scholar
  40. Killian CE, Croker L, Wilt FH (2010) SpSM30 gene family expression patterns in embryonic and adult biomineralized tissues of the sea urchin, Strongylocentrotus purpuratus. Gene Expr Patterns 10:135–139PubMedCrossRefGoogle Scholar
  41. Kiyomoto M, Zito F, Sciarrino S (2004) Commitment and response to inductive signals of primary mesenchyme cells of the sea urchin embryo. Dev Growth Differ 46:107–114PubMedCrossRefGoogle Scholar
  42. Kiyomoto M, Morinaga S, Ooi N (2010) Distinct embryotoxic effects of lithium appeared in a new assessment model of the sea urchin: the whole embryo assay and the blastomere culture assay. Ecotoxicology 19:563–770PubMedCrossRefGoogle Scholar
  43. Kniprath E (1974) Ultrastructure and growth of the sea urchin tooth. Calc Tiss Res 14:211–228CrossRefGoogle Scholar
  44. Kobayashi N, Okamura H (2004) Effects of heavy metals on sea urchin embryo development. Chemosphere 55:1403–1412PubMedCrossRefGoogle Scholar
  45. Kurihara H, Shirayama Y (2004) Effects of increased atmospheric CO2 on sea urchin early development. Mar Ecol Progr Series 274:161–196CrossRefGoogle Scholar
  46. Lapraz F, Röttinger E, Duboc V et al (2006) RTK and TGF-β signaling pathways genes in the sea urchin genome. Dev Biol 300:132–152PubMedCrossRefGoogle Scholar
  47. Lima PDL, Vasconcellos MC, Bahia MO, Montenegro RC, Pessoa CO, Costa-Lotufo LV, Moraes MO, Burbano RR (2008) Genotoxic and cytotoxic effects of manganese chloride in cultured human lymphocytes treated in different phases of cell cycle. Toxicol In Vitro 22:1032–1037PubMedCrossRefGoogle Scholar
  48. Livingston BT, Killian CE, Wilt F et al (2006) A genome-wide analysis of biomineralization-related proteins in the sea urchin Strongylocentrotus purpuratus. Dev Biol 300:335–348PubMedCrossRefGoogle Scholar
  49. Lowenstam HA (1981) Minerals formed by organisms. Science 211:1126–1131PubMedCrossRefGoogle Scholar
  50. Lowenstam HA, Weiner S (1989) On Biomineralization. Oxford University Press, New YorkGoogle Scholar
  51. Mann S (1983) Mineralization in biological systems. Struct Bonding 54:125–174CrossRefGoogle Scholar
  52. Mann S (2001) Biomineralization: principles and concepts in bioinorganic materials chemistry. Oxford University Press, New YorkGoogle Scholar
  53. Mann K, Poustka AJ, Mann M (2008a) In-depth, high-accuracy proteomics of sea urchin tooth organic matrix. Proteome Sci 6:33PubMedCrossRefGoogle Scholar
  54. Mann K, Poustka AJ, Mann M (2008b) The sea urchin (Strongylocentrotus purpuratus) test and spine proteomes. Proteome Sci 6:22PubMedCrossRefGoogle Scholar
  55. Mann K, Wilt FH, Poustka AJ (2010) Proteomic analysis of sea urchin (Strongylocentrotus purpuratus) spicule matrix. Proteome Science 8:33PubMedCrossRefGoogle Scholar
  56. Marin F, Amons R, Guichard N, Stigter M, Hecker A, Luquet G, Layrolle P, Alcaraz G, Riondet C, Westbroek P (2005) Caspartin and calprismin, two proteins of the shell calcitic prisms of the Mediterranean fan mussel Pinna nobilis. J Biol Chem 280:33895–33908PubMedCrossRefGoogle Scholar
  57. Märkel K, Röser U (1985) Comparative morphology of echinoderm calcified tissues: Histology and ultrastructure of ophiuroid scales (Echinodermata, Ophiuroida). Zoomorphology 105:197–207CrossRefGoogle Scholar
  58. Märkel K, Röser U, Mackenstedt K (1986) Ultrastructural investigations of matrix-mediated biomineralization in echinoids (Echinodermata, Echinoidea). Zoomorphology 106:232–243CrossRefGoogle Scholar
  59. Matranga V, Di Ferro D, Zito F, Cervello M, Nakano E (1992) A new extracellular matrix protein of the sea urchin embryo with properties of a substrate adhesion molecule. Roux‘s Arch Dev Biol 201:173–178CrossRefGoogle Scholar
  60. Matranga V, Zito F, Costa C, Bonaventura R, Giarrusso S, Celi F (2010) Embryonic development and skeletogenic gene expression affected by X-rays in the Mediterranean sea urchin Paracentrotus lividus. Ecotoxicology 19:530–537PubMedCrossRefGoogle Scholar
  61. McClay DR, Alliegro MC, Black SD (1990) The ontogenetic appearance of extracellular matrix during sea urchin development. In Organization and assembly of plant and animal extracellular matrix (eds: Adair WS, Mecham R). pp 1–13 Academic Press, San Diego, CAGoogle Scholar
  62. O’Donnell MJ, Todgham AE, Sewell MA, Hammond LM, Ruggiero K, Fangue NA, Zippay ML, Hofmann GE (2010) Ocean acidification alters skeletogenesis and gene expression in larval sea urchins. Mar Ecol Progr Series 398:157–171CrossRefGoogle Scholar
  63. Orr JC, Fabry VJ, Aumont O, Bopp L, Doney SC, Feely RA, Gnanadesikan A, Gruber N, Ishida A, Joos F, Key RM, Lindsay K, Maier-Reimer E, Matear R, Monfray P, Mouchet A, Najjar RG, Plattner GK, Rodgers KB, Sabine CL, Sarmiento JL, Schlitzer R, Slater RD, Totterdell IJ, Weirig MF, Yamanaka Y, Yool A (2005) Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature 437:681–686PubMedCrossRefGoogle Scholar
  64. Pinsino A, Thorndyke MC, Matranga V (2007) Coelomocytes and post-traumatic response in the common sea star Asterias rubens. Cell Stress Chap 12:332–342CrossRefGoogle Scholar
  65. Pinsino A, Matranga V, Trinchella F, Roccheri MC (2010) Sea urchin embryos as an in vivo model for the assessment of manganese toxicity: developmental and stress response effects. Ecotoxicology 19:555–562PubMedCrossRefGoogle Scholar
  66. Poustka AJ, Kühn A, Groth D, Weise V, Yaguchi S, Burke RD, Herwig R, Lehrach H, Panopoulou G (2007) A global view of gene expression in lithium and zinc treated sea urchin embryos: new components of gene regulatory networks. Genome Biol 8:R85PubMedCrossRefGoogle Scholar
  67. Radenac G, Fichet D, Miramand P (2001) Bioaccumulation and toxicity of four dissolved metals in Paracentrotus lividus sea-urchin embryo. Mar Environ Res 51:151–166PubMedCrossRefGoogle Scholar
  68. Range R, Lapraz F, Quirin M, Marro S, Besnardeau L, Lepage T (2007) Cis-regulatory analysis of nodal and maternal control of dorsal–ventral axis formation by Univin, a TGF-β related to Vg1. Development 134:3649–3664PubMedCrossRefGoogle Scholar
  69. Raz S, Weiner S, Addadi L (2000) The formation of high magnesium calcite via a transient amorphous colloid phase. Adv Mater 12:38–42CrossRefGoogle Scholar
  70. Raz S, Hamilton P, Wilt F, Weiner S, Addadi L (2003) The transient phase of amorphous calcium carbonate in sea urchin larval spicules: the involvement of proteins and magnesium ions in its formation and stabilization. Adv Funct Mater 13:480–486CrossRefGoogle Scholar
  71. Roccheri MC, Agnello M, Bonaventura R, Matranga V (2004) Cadmium induces the expression of specific stress proteins in sea urchin embryos. Biochem Biophys Res Commun 321:80–87PubMedCrossRefGoogle Scholar
  72. Röttinger E, Saudemont A, Duboc V et al (2008) FGF signals guide migration of mesenchymal cells, control skeletal morphogenesis and regulate gastrulation during sea urchin development. Development 135:354–365CrossRefGoogle Scholar
  73. Russo R, Bonaventura R, Zito F, Schroder HC, Muller I, Muller WEG, Matranga V (2003) Stress to cadmium monitored by metallothionein gene induction in Paracentrotus lividus embryos. Cell Stress Chaperones 8:232–241PubMedCrossRefGoogle Scholar
  74. Russo R, Zito F, Costa C, Bonaventura R, Matranga V (2010) Transcriptional increase and misexpression of 14-3-3 epsilon in sea urchin embryos exposed to UV-B. Cell Stress Chaperones 15:993–1001PubMedCrossRefGoogle Scholar
  75. Saitoh M, Kuroda R, Muranaka Y, Uto N, Murai J, Kuroda H (2010) Asymmetric inhibition of spicule formation in sea urchin embryos with low concentrations of gadolinium ion. Dev Growth Differ 52:735–746PubMedCrossRefGoogle Scholar
  76. Santamaria AB (2008) Manganese exposure, essentiality & toxicity. Indian J Med Res 128:484–500PubMedGoogle Scholar
  77. Satyanarayana YV, Saraf R (2007) Iron and manganese contamination: sources, adverse effects and control methods. J Environ Sci Eng 49:333–336PubMedGoogle Scholar
  78. Schröder HC, Di Bella G, Janipour N, Bonaventura R, Russo R, Müller WE, Matranga V (2005) DNA damage and developmental defects after exposure to UV and heavy metals in sea urchin cells and embryos compared to other invertebrates. Prog Mol Subcell Biol 39:111–137PubMedCrossRefGoogle Scholar
  79. Sheppard-Brennand H, Soars N, Dworjanyn SA, Davis AR, Byrne M (2010) Impact of ocean warming and ocean acidification on larval development and calcification in the sea urchin tripneustes gratilla. PLoS One 5:e11372PubMedCrossRefGoogle Scholar
  80. Simkiss K (1986) The processes of biomineralization in lower plants and animals-an overview. In: Leadbeater BSC, Riding R (eds) Biomineralization in lower plants and animals, vol 30. Oxford University Press, New York, pp 19–37Google Scholar
  81. Simkiss K, Wilbur K (1989) Biomineralization. Cell Biology and Mineral Deposition. Academic Press, Inc., San DiegoGoogle Scholar
  82. Smith LC, Ghosh J, Buckley MK, Clow AL, Dheilly MN, Haug T et al (2010) Echinoderm immunity. In: Soderhall K (ed) Invertebrate immunology. Landes Bioscience, IncGoogle Scholar
  83. Stenzel P, Angerer LM, Smith BJ, Angerer RC, Vale WW (1994) The univin gene encodes a member of the transforming growth factor-beta superfamily with restricted expression in the sea urchin embryo. Dev Biol 166:149–158PubMedCrossRefGoogle Scholar
  84. Stricker SA (1985) The ultrastructure and formation of the calcareous ossicles in the body wall of the sea cucumber Leptosynapta clarki (Echinodermata, Holothuroida). Zoomorphology 105:209–222CrossRefGoogle Scholar
  85. Tedetti M, Sempéré R (2007) Penetration of ultraviolet radiation in the marine environment. A review Photochem Photobiol 82:389–397CrossRefGoogle Scholar
  86. Tesoro V, Zito F, Yokota Y, Nakano E, Sciarrino S, Matranga V (1998) A protein of the basal lamina of the sea urchin embryo. Dev Growth Differ 40:527–535PubMedCrossRefGoogle Scholar
  87. Todgham AE, Hofmann GE (2009) Transcriptomic response of sea urchin larvae Strongylocentrotus purpuratus to CO2-driven seawater acidification. J Exp Biol 212:2579–2594PubMedCrossRefGoogle Scholar
  88. Truhaut R (1977) Eco-toxicology – objectives, principles and perspectives. Ecotoxicology and Environm Safety 2:151–173CrossRefGoogle Scholar
  89. Weber JN, Raup DM (1966) Fractionation of the stable isotopes of carbon and oxygen in marine calcareous organisms—the Echinoidea. Part II. Environmental and genetic factors. Geochim Cosmochim Acta 30:705–736CrossRefGoogle Scholar
  90. Weiss IM, Tuross N, Addadi L, Weiner S (2002) Mollusk larval shell formation: amorphous calcium carbonate is a precursor for aragonite. J Exp Zool 293:478–491PubMedCrossRefGoogle Scholar
  91. Wessel G, Berg L (1995) A spatially restricted molecule of the extracellular matrix is contributed both maternally and zygotically in the sea urchin embryo. Dev Growth Diff 37:517–527CrossRefGoogle Scholar
  92. Wessel GM, Etkin M, Benson S (1991) Primary mesenchyme cells of the sea urchin embryo require an autonomously produced, nonfibrillar collagen for spiculogenesis. Dev Biol 148:261–272PubMedCrossRefGoogle Scholar
  93. Wilt F (1999) Matrix and mineral in the sea urchin larval skeleton. J Struct Biol 126:216–226PubMedCrossRefGoogle Scholar
  94. Wilt FH, Killian CE, Hamilton P, Croker L (2008) The dynamics of secretion during sea urchin embryonic skeleton formation. Exp Cell Res 314:1744–1752PubMedCrossRefGoogle Scholar
  95. Yang L, Killian CE, Kunz M, Tamura N, Gilbert PUPA (2011) Biomineral nanoparticles are space-filling. Nanoscale 3:603–609PubMedCrossRefGoogle Scholar
  96. Yokota Y, Matranga V, Zito F, Cervello M, Nakano E (1994) Nectins in sea urchin eggs and embryos. J Mar Biol Ass UK 74:27–34CrossRefGoogle Scholar
  97. Zito F, Matranga V (2009) Secondary mesenchyme cells as potential stem cells of the sea urchin embryo. In Stem cells in marine organisms (eds: Rinkevich B, Matranga V). Springer, New York, pp 187–213CrossRefGoogle Scholar
  98. Zito F, TesoroV McClay DR, Nakano E, Matranga V (1998) Ectoderm cell–ECM interaction is essential for sea urchin embryo skeletogenesis. Dev Biol 196:184–192PubMedCrossRefGoogle Scholar
  99. Zito F, Costa C, Sciarrino S, Poma V, Russo R, Angerer LM, Matranga V (2003) Expression of univin, a TGF-beta growth factor, requires ectoderm–ECM interaction and promotes skeletal growth in the sea urchin embryo. Dev Biol 264:217–227PubMedCrossRefGoogle Scholar
  100. Zito F, Burke RD, Matranga V (2010) Pl-nectin, a discoidin family member, is a ligand for betaC integrins in the sea urchin embryo. Matrix Biol 29:341–345PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Valeria Matranga
    • 1
    Email author
  • Rosa Bonaventura
    • 2
  • Caterina Costa
    • 2
  • Konstantinos Karakostis
    • 2
  • Annalisa Pinsino
    • 2
  • Roberta Russo
    • 2
  • Francesca Zito
    • 2
  1. 1.Consiglio Nazionale delle RicercheIstituto di Biomedicina e Immunologia Molecolare “Alberto Monroy”PalermoItaly
  2. 2.Consiglio Nazionale delle RicercheIstituto di Biomedicinae Immunologia Molecolare “Alberto Monroy”PalermoItaly

Personalised recommendations