Skip to main content

Echinoderms as Blueprints for Biocalcification: Regulation of Skeletogenic Genes and Matrices

  • Chapter
  • First Online:
Molecular Biomineralization

Abstract

Echinoderms have an extensive endoskeleton composed of magnesian calcite, a form of calcium carbonate that contains small amounts of magnesium carbonate and occluded matrix proteins. Adult sea urchins have several calcified structures, including test, teeth, and spines, composed of numerous ossicles which form a three-dimensional meshwork of mineral trabeculae, the stereom. The biomineral development begins in 24-hour-old embryos within the primary mesenchyme cells (PMCs), the only cells producing a set of necessary matrix proteins. The deposition of the biomineral occurs in a privileged extracellular space produced by the fused filopodial processes of the PMCs. We showed for the first time that signals from ectoderm cells overlying PMCs play an important role in the regulation of biomineralization-related genes. It is believed that growth factors are produced by ectoderm cells and released into the blastocoel where they interact with cognate receptor tyrosine kinases restricted to PMCs, which activate signaling cascades regulating the expression of biomineralization-related genes. We demonstrated the implication of a TGF-beta family factor by a perturbation model in which skeleton elongation was indirectly blocked by monoclonal antibodies to an extracellular matrix (ECM) protein located on the apical surface of ectoderm. Thus, it was inferred that interfering with the binding of the ECM ligand, a member of the discoidin family, to its cell surface receptor, a βC integrin, disrupts the ectodermal cell signaling cascade, resulting in reduced or aberrant skeletons. During the last few years, we analyzed the expression of biomineralization-related genes in other examples of experimentally induced skeleton malformations, produced by the exposure to toxic metals, such as Cd and Mn or ionizing radiations, such as UV-B and X-rays. Besides the obvious toxicological implication, since the mis-expression of spicule matrix genes paralleled skeleton defects, we believe that by means of these studies we can dissect the molecular steps taking place and possibly understand the physiological events regulating embryonic biomineralization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Addadi L, Raz S, Weiner S (2003) Taking advantage of disorder: amorphous calcium carbonate and its roles in biomineralization. Adv Mat 15:959–970

    Article  CAS  Google Scholar 

  • Agca C, Klein WH, Venutia JM (2009) Respecification of ectoderm and altered Nodal expression in sea urchin embryos after cobalt and nickel treatment. Mech Dev 126:430–442

    Article  PubMed  CAS  Google Scholar 

  • Aizenberg J, Lambert G, Addadi L, Weiner S (1996) Stabilization of amorphous calcium carbonate by specialized macromolecules in biological and synthetic precipitates. Adv Mat 8:222–226

    Article  CAS  Google Scholar 

  • Alvares K, Dixit SN, Lux E, Veis A (2009) Echinoderm Phosphorylated Matrix Proteins UTMP16 and UTMP19 Have Different Functions in Sea Urchin Tooth Mineralization. J Biol Chem 284:26149–26160

    Article  PubMed  CAS  Google Scholar 

  • ATSDR (2008) Draft toxicological profile for manganese. Agency for toxic substances and disease registry. Division of toxicology and environmental medicine/applied toxicology branch, Atlanta, Georgia. Available via DIALOG. http://www.atsdr.cdc.gov/tox profiles/tp151-p.pdf

  • Banaszak AT, Lesser MP (2009) Effects of solar ultraviolet radiation on coral reef organisms. Photochem Photobiol Sci 8:1276–1294

    Article  PubMed  CAS  Google Scholar 

  • Batel R, Fafandjel M, Blumbach B, Schröder HC, Hassanein HM, Müller IM, Müller WE (1998) Expression of the human XPB/ERCC-3 excision repair gene-homolog in the sponge Geodia cydonium after exposure to ultraviolet radiation. Mutat Res 409:123–133

    PubMed  CAS  Google Scholar 

  • Beniash E, Aizenberg J, Addadi L et al (1997) Amorphous calcium carbonate transforms into calcite durino sea urchin larval spicule growth. Proc R Soc Lond B 264:461–465

    Article  CAS  Google Scholar 

  • Berman A, Hanson J, Leiserowitz L, Koetzle TF, Weiner S, Addadi L (1993) Biological control of crystal texture: A widespread strategy for adapting crystal properties to function. Science 259:776–779

    Article  PubMed  CAS  Google Scholar 

  • Bisgrove BW, Andrews ME, Raff RA (1991) Fibropellins, products of an EGF repeat-containing gene, form a unique extracellular matrix structure that surrounds the sea urchin embryo. Dev Biol 146:89–99

    Article  PubMed  CAS  Google Scholar 

  • Bonaventura R, Poma V, Costa C, Matranga V (2005) UVB radiation prevents skeleton growth and stimulates the expression of stress markers in sea urchin embryos. Biochem Bioph Res Co 328:150–157

    Article  CAS  Google Scholar 

  • Bonaventura R, Poma V, Russo R, Zito F, Matranga V (2006) Effects of UV-B radiation on the development and hsp 70 expression in sea urchin cleavage embryos. Mar Biol 149:79–86

    Article  CAS  Google Scholar 

  • Candia Carnevali MD, Thorndyke MC, Matranga V (2009) Regenerating echinoderms: a promise to understand stem cells potential. In: Stem cells in marine organisms (eds: Rinkevich B, Matranga V) Springer, New York, pp 165–186

    Google Scholar 

  • Chapman PM (2002) Integrating toxicology and ecology: putting the "eco" into ecotoxicology. Mar Poll Bull 44:7–15

    Article  CAS  Google Scholar 

  • CICAD (2004) Manganese and its compounds: environmental aspects. Concise international chemical assessment document63. WHO, Geneva, Switzerland Available via DIALOG. http://www.who.int/ipcs/publications/cicad/cicad63_rev_1.pdf

  • Costa C, Cavalcante C, Zito F, Yokota Y, Matranga V (2010) Phylogenetic analysis an homology modelling of Paracentrotus lividus nectin. Mol Divers 14:653–665

    Article  PubMed  CAS  Google Scholar 

  • Coteur G, Gosselin P, Wantier P, Chambost-Manciet Y, Danis B, Pernet P, Warnau M, Dubois P (2003) Echinoderms as bioindicators, bioassays, and impact assessment tools of sediment-associated metals and PCBs in the North Sea. Arch Environ Contam Toxicol 45:190–202

    Article  PubMed  CAS  Google Scholar 

  • Daly MJ (2009) A new perspective on radiation resistance based on Deinococcus radiodurans. Nat Rev Microbiol 7:237–244

    Article  PubMed  CAS  Google Scholar 

  • Drager BJ, Harkey MA, Iwata M, Whitele AH (1989) The expression of embryonic primary mesenchyme genes of the sea urchin, Strongylocentrotus purpuratus, in the adult skeletogenic tissues of this and other species of echinoderms. Dev Biol 133:14–23

    Article  PubMed  CAS  Google Scholar 

  • Duffus JH (2002) Effect of Cr(VI) exposure on sperm quality. Ann Occup HygMar 46:269–270

    Article  CAS  Google Scholar 

  • Dunne RP, Brown BE (1996) Penetration of solar UVB radiation in shallow tropical waters and its potential biological effects on coral reefs; results from the central Indian Ocean and Andaman Sea. Mar Ecol Prog Ser 144:109–118

    Article  Google Scholar 

  • Dupon S, Ortega-Martinez O, Thorndyke M (2010) Impact of near-future ocean acidification on echinoderms. Ecotoxicology 19:449–462

    Article  Google Scholar 

  • Ettensohn CA (2009) Lessons from a gene regulatory network: echinoderm skeletogenesis provides insights into evolution, plasticity and morphogenesis. Development 136:11–21

    Article  PubMed  CAS  Google Scholar 

  • Falini G, Albeck S, Weiner S, Addadi L (1996) Control of aragonite or calcite polymorphism by mollusk shell macromolecules. Science 271:67–69

    Article  Google Scholar 

  • Filosto S, Roccheri MC, Bonaventura R, Matranga V (2008) Environmentally relevant cadmium concentrations affect development and induce apoptosis of Paracentrotus lividus larvae cultured in vitro. Cell Biol Toxicol 24:603–610

    Article  PubMed  CAS  Google Scholar 

  • Frankel RB, Bazylinski DA (2003) Biologically induced mineralization by bacteria. Rev Mineral Geochem 54:95–114

    Article  CAS  Google Scholar 

  • Gattuso JP, Gao K, Lee K, Rost B, Schulz KG (2010) Approaches and tools to manipulate the carbonate chemistry. In: Riebesell U, Fabry VJ, Hansson L, Gattuso J-P (eds) Guide to best practices for ocean acidification research and data reporting. Publications Office of the European Union, Luxembourg, pp 41–52

    Google Scholar 

  • Gerber GB, Leonard A, Hantson Ph (2002) Carcinogenicity, muta- genicity and teratogenicity of manganese compounds. Crit Rev Oncol Hematol 42:25–34

    Article  PubMed  CAS  Google Scholar 

  • Guss KA, Ettensohn CA (1997) Skeletal morphogenesis in the sea urchin embryo: regulation of primary mesenchyme gene expression and skeletal rod growth by ectoderm-derived cues. Development 124:1899–1908

    PubMed  CAS  Google Scholar 

  • Hader DP (2000) Effects of solar UV-B radiation on aquatic ecosystems. Adv Space Res 26:2029–2040

    Article  PubMed  CAS  Google Scholar 

  • Hardin J, Coffman JA, Black SD, McClay DR (1992) Commitment along the dorsoventral axis of the sea urchin embryo is altered in response to NiCl2. Development 116:671–685

    PubMed  CAS  Google Scholar 

  • Heatfield BM, Travis DF (1975) Ultrastructural studies of regenerating spines of the sea urchin Strongylocentrotus purpuratus. II. Cells with spherules. J Morphol 145:51–72

    Article  PubMed  CAS  Google Scholar 

  • Hodor PG, Illies MR, Broadley S, Ettensohn CA (2000) Cell-substrate interactions during sea urchin gastrulation: migrating primary mesenchyme cells interact with and align extracellular matrix fibers that contain ECM3, a molecule with NG2-like and multiple calcium-binding domains. Dev Biol 222:181–194

    Article  PubMed  CAS  Google Scholar 

  • Holzinger A, Lütz C (2006) Algae and UV irradiation: effects on ultrastructure and related metabolic functions. Micron 37(190–606):207

    Google Scholar 

  • Hörstadius S (1939) The mechanics of sea urchin development, studied by operative methods. Biol Rev 14:132–179

    Article  Google Scholar 

  • Ingersoll EP, Wilt FH (1998) Matrix metalloproteinase inhibitors disrupt spicule formation by primary mesenchyme cells in the sea urchin embryo. Dev Biol 196:95–106

    Article  PubMed  CAS  Google Scholar 

  • Kato T (2000) Polymer/calcium carbonate layered thin-film composites. Adv Mater 12:1543–1546

    Article  CAS  Google Scholar 

  • Kato KH, Abe T, Nakashima S, Matranga V, Zito F, Yokota Y (2004) ‘Nectosome’: a novel cytoplasmic vesicle containing nectin in the egg of the sea urchin, Temnopleurus hardwickii. Develop Growth Differ 46:239–247

    Article  CAS  Google Scholar 

  • Katow H (1995) Pamlin, a primary mesenchyme cell adhesion protein, in the basal lamina of the sea urchin embryo. Exp Cell Res 218:469–478

    Article  PubMed  CAS  Google Scholar 

  • Killian CE, Croker L, Wilt FH (2010) SpSM30 gene family expression patterns in embryonic and adult biomineralized tissues of the sea urchin, Strongylocentrotus purpuratus. Gene Expr Patterns 10:135–139

    Article  PubMed  CAS  Google Scholar 

  • Kiyomoto M, Zito F, Sciarrino S (2004) Commitment and response to inductive signals of primary mesenchyme cells of the sea urchin embryo. Dev Growth Differ 46:107–114

    Article  PubMed  Google Scholar 

  • Kiyomoto M, Morinaga S, Ooi N (2010) Distinct embryotoxic effects of lithium appeared in a new assessment model of the sea urchin: the whole embryo assay and the blastomere culture assay. Ecotoxicology 19:563–770

    Article  PubMed  CAS  Google Scholar 

  • Kniprath E (1974) Ultrastructure and growth of the sea urchin tooth. Calc Tiss Res 14:211–228

    Article  CAS  Google Scholar 

  • Kobayashi N, Okamura H (2004) Effects of heavy metals on sea urchin embryo development. Chemosphere 55:1403–1412

    Article  PubMed  CAS  Google Scholar 

  • Kurihara H, Shirayama Y (2004) Effects of increased atmospheric CO2 on sea urchin early development. Mar Ecol Progr Series 274:161–196

    Article  Google Scholar 

  • Lapraz F, Röttinger E, Duboc V et al (2006) RTK and TGF-β signaling pathways genes in the sea urchin genome. Dev Biol 300:132–152

    Article  PubMed  CAS  Google Scholar 

  • Lima PDL, Vasconcellos MC, Bahia MO, Montenegro RC, Pessoa CO, Costa-Lotufo LV, Moraes MO, Burbano RR (2008) Genotoxic and cytotoxic effects of manganese chloride in cultured human lymphocytes treated in different phases of cell cycle. Toxicol In Vitro 22:1032–1037

    Article  PubMed  CAS  Google Scholar 

  • Livingston BT, Killian CE, Wilt F et al (2006) A genome-wide analysis of biomineralization-related proteins in the sea urchin Strongylocentrotus purpuratus. Dev Biol 300:335–348

    Article  PubMed  CAS  Google Scholar 

  • Lowenstam HA (1981) Minerals formed by organisms. Science 211:1126–1131

    Article  PubMed  CAS  Google Scholar 

  • Lowenstam HA, Weiner S (1989) On Biomineralization. Oxford University Press, New York

    Google Scholar 

  • Mann S (1983) Mineralization in biological systems. Struct Bonding 54:125–174

    Article  CAS  Google Scholar 

  • Mann S (2001) Biomineralization: principles and concepts in bioinorganic materials chemistry. Oxford University Press, New York

    Google Scholar 

  • Mann K, Poustka AJ, Mann M (2008a) In-depth, high-accuracy proteomics of sea urchin tooth organic matrix. Proteome Sci 6:33

    Article  PubMed  Google Scholar 

  • Mann K, Poustka AJ, Mann M (2008b) The sea urchin (Strongylocentrotus purpuratus) test and spine proteomes. Proteome Sci 6:22

    Article  PubMed  Google Scholar 

  • Mann K, Wilt FH, Poustka AJ (2010) Proteomic analysis of sea urchin (Strongylocentrotus purpuratus) spicule matrix. Proteome Science 8:33

    Article  PubMed  Google Scholar 

  • Marin F, Amons R, Guichard N, Stigter M, Hecker A, Luquet G, Layrolle P, Alcaraz G, Riondet C, Westbroek P (2005) Caspartin and calprismin, two proteins of the shell calcitic prisms of the Mediterranean fan mussel Pinna nobilis. J Biol Chem 280:33895–33908

    Article  PubMed  CAS  Google Scholar 

  • Märkel K, Röser U (1985) Comparative morphology of echinoderm calcified tissues: Histology and ultrastructure of ophiuroid scales (Echinodermata, Ophiuroida). Zoomorphology 105:197–207

    Article  Google Scholar 

  • Märkel K, Röser U, Mackenstedt K (1986) Ultrastructural investigations of matrix-mediated biomineralization in echinoids (Echinodermata, Echinoidea). Zoomorphology 106:232–243

    Article  Google Scholar 

  • Matranga V, Di Ferro D, Zito F, Cervello M, Nakano E (1992) A new extracellular matrix protein of the sea urchin embryo with properties of a substrate adhesion molecule. Roux‘s Arch Dev Biol 201:173–178

    Article  CAS  Google Scholar 

  • Matranga V, Zito F, Costa C, Bonaventura R, Giarrusso S, Celi F (2010) Embryonic development and skeletogenic gene expression affected by X-rays in the Mediterranean sea urchin Paracentrotus lividus. Ecotoxicology 19:530–537

    Article  PubMed  CAS  Google Scholar 

  • McClay DR, Alliegro MC, Black SD (1990) The ontogenetic appearance of extracellular matrix during sea urchin development. In Organization and assembly of plant and animal extracellular matrix (eds: Adair WS, Mecham R). pp 1–13 Academic Press, San Diego, CA

    Google Scholar 

  • O’Donnell MJ, Todgham AE, Sewell MA, Hammond LM, Ruggiero K, Fangue NA, Zippay ML, Hofmann GE (2010) Ocean acidification alters skeletogenesis and gene expression in larval sea urchins. Mar Ecol Progr Series 398:157–171

    Article  Google Scholar 

  • Orr JC, Fabry VJ, Aumont O, Bopp L, Doney SC, Feely RA, Gnanadesikan A, Gruber N, Ishida A, Joos F, Key RM, Lindsay K, Maier-Reimer E, Matear R, Monfray P, Mouchet A, Najjar RG, Plattner GK, Rodgers KB, Sabine CL, Sarmiento JL, Schlitzer R, Slater RD, Totterdell IJ, Weirig MF, Yamanaka Y, Yool A (2005) Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature 437:681–686

    Article  PubMed  CAS  Google Scholar 

  • Pinsino A, Thorndyke MC, Matranga V (2007) Coelomocytes and post-traumatic response in the common sea star Asterias rubens. Cell Stress Chap 12:332–342

    Article  Google Scholar 

  • Pinsino A, Matranga V, Trinchella F, Roccheri MC (2010) Sea urchin embryos as an in vivo model for the assessment of manganese toxicity: developmental and stress response effects. Ecotoxicology 19:555–562

    Article  PubMed  CAS  Google Scholar 

  • Poustka AJ, Kühn A, Groth D, Weise V, Yaguchi S, Burke RD, Herwig R, Lehrach H, Panopoulou G (2007) A global view of gene expression in lithium and zinc treated sea urchin embryos: new components of gene regulatory networks. Genome Biol 8:R85

    Article  PubMed  Google Scholar 

  • Radenac G, Fichet D, Miramand P (2001) Bioaccumulation and toxicity of four dissolved metals in Paracentrotus lividus sea-urchin embryo. Mar Environ Res 51:151–166

    Article  PubMed  CAS  Google Scholar 

  • Range R, Lapraz F, Quirin M, Marro S, Besnardeau L, Lepage T (2007) Cis-regulatory analysis of nodal and maternal control of dorsal–ventral axis formation by Univin, a TGF-β related to Vg1. Development 134:3649–3664

    Article  PubMed  CAS  Google Scholar 

  • Raz S, Weiner S, Addadi L (2000) The formation of high magnesium calcite via a transient amorphous colloid phase. Adv Mater 12:38–42

    Article  CAS  Google Scholar 

  • Raz S, Hamilton P, Wilt F, Weiner S, Addadi L (2003) The transient phase of amorphous calcium carbonate in sea urchin larval spicules: the involvement of proteins and magnesium ions in its formation and stabilization. Adv Funct Mater 13:480–486

    Article  CAS  Google Scholar 

  • Roccheri MC, Agnello M, Bonaventura R, Matranga V (2004) Cadmium induces the expression of specific stress proteins in sea urchin embryos. Biochem Biophys Res Commun 321:80–87

    Article  PubMed  CAS  Google Scholar 

  • Röttinger E, Saudemont A, Duboc V et al (2008) FGF signals guide migration of mesenchymal cells, control skeletal morphogenesis and regulate gastrulation during sea urchin development. Development 135:354–365

    Article  Google Scholar 

  • Russo R, Bonaventura R, Zito F, Schroder HC, Muller I, Muller WEG, Matranga V (2003) Stress to cadmium monitored by metallothionein gene induction in Paracentrotus lividus embryos. Cell Stress Chaperones 8:232–241

    Article  PubMed  CAS  Google Scholar 

  • Russo R, Zito F, Costa C, Bonaventura R, Matranga V (2010) Transcriptional increase and misexpression of 14-3-3 epsilon in sea urchin embryos exposed to UV-B. Cell Stress Chaperones 15:993–1001

    Article  PubMed  CAS  Google Scholar 

  • Saitoh M, Kuroda R, Muranaka Y, Uto N, Murai J, Kuroda H (2010) Asymmetric inhibition of spicule formation in sea urchin embryos with low concentrations of gadolinium ion. Dev Growth Differ 52:735–746

    Article  PubMed  CAS  Google Scholar 

  • Santamaria AB (2008) Manganese exposure, essentiality & toxicity. Indian J Med Res 128:484–500

    PubMed  CAS  Google Scholar 

  • Satyanarayana YV, Saraf R (2007) Iron and manganese contamination: sources, adverse effects and control methods. J Environ Sci Eng 49:333–336

    PubMed  CAS  Google Scholar 

  • Schröder HC, Di Bella G, Janipour N, Bonaventura R, Russo R, Müller WE, Matranga V (2005) DNA damage and developmental defects after exposure to UV and heavy metals in sea urchin cells and embryos compared to other invertebrates. Prog Mol Subcell Biol 39:111–137

    Article  PubMed  Google Scholar 

  • Sheppard-Brennand H, Soars N, Dworjanyn SA, Davis AR, Byrne M (2010) Impact of ocean warming and ocean acidification on larval development and calcification in the sea urchin tripneustes gratilla. PLoS One 5:e11372

    Article  PubMed  Google Scholar 

  • Simkiss K (1986) The processes of biomineralization in lower plants and animals-an overview. In: Leadbeater BSC, Riding R (eds) Biomineralization in lower plants and animals, vol 30. Oxford University Press, New York, pp 19–37

    Google Scholar 

  • Simkiss K, Wilbur K (1989) Biomineralization. Cell Biology and Mineral Deposition. Academic Press, Inc., San Diego

    Google Scholar 

  • Smith LC, Ghosh J, Buckley MK, Clow AL, Dheilly MN, Haug T et al (2010) Echinoderm immunity. In: Soderhall K (ed) Invertebrate immunology. Landes Bioscience, Inc

    Google Scholar 

  • Stenzel P, Angerer LM, Smith BJ, Angerer RC, Vale WW (1994) The univin gene encodes a member of the transforming growth factor-beta superfamily with restricted expression in the sea urchin embryo. Dev Biol 166:149–158

    Article  PubMed  CAS  Google Scholar 

  • Stricker SA (1985) The ultrastructure and formation of the calcareous ossicles in the body wall of the sea cucumber Leptosynapta clarki (Echinodermata, Holothuroida). Zoomorphology 105:209–222

    Article  Google Scholar 

  • Tedetti M, Sempéré R (2007) Penetration of ultraviolet radiation in the marine environment. A review Photochem Photobiol 82:389–397

    Article  Google Scholar 

  • Tesoro V, Zito F, Yokota Y, Nakano E, Sciarrino S, Matranga V (1998) A protein of the basal lamina of the sea urchin embryo. Dev Growth Differ 40:527–535

    Article  PubMed  CAS  Google Scholar 

  • Todgham AE, Hofmann GE (2009) Transcriptomic response of sea urchin larvae Strongylocentrotus purpuratus to CO2-driven seawater acidification. J Exp Biol 212:2579–2594

    Article  PubMed  CAS  Google Scholar 

  • Truhaut R (1977) Eco-toxicology – objectives, principles and perspectives. Ecotoxicology and Environm Safety 2:151–173

    Article  Google Scholar 

  • Weber JN, Raup DM (1966) Fractionation of the stable isotopes of carbon and oxygen in marine calcareous organisms—the Echinoidea. Part II. Environmental and genetic factors. Geochim Cosmochim Acta 30:705–736

    Article  CAS  Google Scholar 

  • Weiss IM, Tuross N, Addadi L, Weiner S (2002) Mollusk larval shell formation: amorphous calcium carbonate is a precursor for aragonite. J Exp Zool 293:478–491

    Article  PubMed  CAS  Google Scholar 

  • Wessel G, Berg L (1995) A spatially restricted molecule of the extracellular matrix is contributed both maternally and zygotically in the sea urchin embryo. Dev Growth Diff 37:517–527

    Article  CAS  Google Scholar 

  • Wessel GM, Etkin M, Benson S (1991) Primary mesenchyme cells of the sea urchin embryo require an autonomously produced, nonfibrillar collagen for spiculogenesis. Dev Biol 148:261–272

    Article  PubMed  CAS  Google Scholar 

  • Wilt F (1999) Matrix and mineral in the sea urchin larval skeleton. J Struct Biol 126:216–226

    Article  PubMed  CAS  Google Scholar 

  • Wilt FH, Killian CE, Hamilton P, Croker L (2008) The dynamics of secretion during sea urchin embryonic skeleton formation. Exp Cell Res 314:1744–1752

    Article  PubMed  CAS  Google Scholar 

  • Yang L, Killian CE, Kunz M, Tamura N, Gilbert PUPA (2011) Biomineral nanoparticles are space-filling. Nanoscale 3:603–609

    Article  PubMed  CAS  Google Scholar 

  • Yokota Y, Matranga V, Zito F, Cervello M, Nakano E (1994) Nectins in sea urchin eggs and embryos. J Mar Biol Ass UK 74:27–34

    Article  CAS  Google Scholar 

  • Zito F, Matranga V (2009) Secondary mesenchyme cells as potential stem cells of the sea urchin embryo. In Stem cells in marine organisms (eds: Rinkevich B, Matranga V). Springer, New York, pp 187–213

    Chapter  Google Scholar 

  • Zito F, TesoroV McClay DR, Nakano E, Matranga V (1998) Ectoderm cell–ECM interaction is essential for sea urchin embryo skeletogenesis. Dev Biol 196:184–192

    Article  PubMed  CAS  Google Scholar 

  • Zito F, Costa C, Sciarrino S, Poma V, Russo R, Angerer LM, Matranga V (2003) Expression of univin, a TGF-beta growth factor, requires ectoderm–ECM interaction and promotes skeletal growth in the sea urchin embryo. Dev Biol 264:217–227

    Article  PubMed  CAS  Google Scholar 

  • Zito F, Burke RD, Matranga V (2010) Pl-nectin, a discoidin family member, is a ligand for betaC integrins in the sea urchin embryo. Matrix Biol 29:341–345

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the BIOMINTEC Project (European Commission N° PITN-GA-2008-215507 grant). Authors are indebted to Prof. Frederic Marin for access to and help in the use of the SEM at the UMR 5561 CNRS BiogÕosciences, UniversitÕ de Bourgogne, 21000 Dijon, France. Authors thank Mr. Mauro Biondo for his valuable technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valeria Matranga .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Matranga, V. et al. (2011). Echinoderms as Blueprints for Biocalcification: Regulation of Skeletogenic Genes and Matrices. In: Müller, W. (eds) Molecular Biomineralization. Progress in Molecular and Subcellular Biology(), vol 52. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21230-7_8

Download citation

Publish with us

Policies and ethics