Advertisement

Molecular Basis of Bacterial Calcium Carbonate Precipitation

  • Brunella Perito
  • Giorgio MastromeiEmail author
Chapter
Part of the Progress in Molecular and Subcellular Biology book series (PMSB, volume 52)

Abstract

Calcium carbonate precipitation is a widespread process, occurring in different bacterial taxonomic groups and in different environments, at a scale ranging from the microscopic one of cells to that of geological formations. It has relevant implications in natural processes and has great potentiality in numerous applications. For these reasons, bacterial precipitation has been investigated extensively both in natural environments and under laboratory conditions. Different mechanisms of bacterial involvement in precipitation have been proposed. There is an agreement that the phenomenon can be influenced by the environmental physicochemical conditions and it is correlated both to the metabolic activity and the cell surface structures of microorganisms. Nevertheless, the role played by bacteria in calcium mineralization remains a matter of debate. This chapter reviews the main mechanisms of the process with particular focus on what is known on molecular aspects, and discusses the significance of the precipitation event also from an evolutionary point of view.

Keywords

Calcium Carbonate Dissolve Inorganic Carbon Carbonate Precipitation Bacterial Metabolism Calcium Carbonate Precipitation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Achal V, Mukherjee A, Basu PC, Sudhakara Reddy M (2009) Strain improvement of Sporosarcina pasteurii for enhanced urease and calcite production. J Ind Microbiol Biotechnol 36:981–988PubMedCrossRefGoogle Scholar
  2. Anderson S, Appanna VD, Huang J, Viswanatha T (1992) A novel role for calcite in calcium homeostasis. FEBS Lett 308:94–96PubMedCrossRefGoogle Scholar
  3. Arp G, Reimer A, Reitner J (2001) Photosynthesis-induced biofilm calcification and calcium concentrations in Phanerozoic oceans. Science 292:1701–1704PubMedCrossRefGoogle Scholar
  4. Atlas RC, Rude PD (1988) Complete oxidation of solid phase sulfides by manganese and bacteria in anoxic marine sediment. Geochim Cosmochim Acta 52:751–766CrossRefGoogle Scholar
  5. Barabesi C, Galizzi A, Mastromei G, Rossi M, Tamburini E, Perito B (2007) Bacillus subtilis gene cluster involved in calcium carbonate biomineralization. J Bacteriol 189:228–235PubMedCrossRefGoogle Scholar
  6. Barabesi C, Salvianti F, Mastromei G, Perito B (2003) Microbial calcium carbonate precipitation for reinforcement of monumental stones. In: Saiz-Jimenez C (ed) Molecular biology and cultural heritage. AA Balkema Publishers, Lisse, The Netherlands, pp 209–212Google Scholar
  7. Barton HA, Spear JR, Pace NR (2001) Microbial life in the underworld: biogenicity in secondary mineral formations. Geomicrobiol J 18:359–368CrossRefGoogle Scholar
  8. Bäuerlein E (2003) Biomineralization of unicellular organisms: an unusual membrane biochemistry for the production of inorganic nano- and microstructures. Angewandte Chemie International Edition 42:614–641CrossRefGoogle Scholar
  9. Bäuerlein E (2004) Biomineralization. Progress in biology, molecular biology and application. WILEY-VHC Verlag GmbH & Co KgaA, WeinheimGoogle Scholar
  10. Ben Omar N, Arias JM, Gonzalez-Munoz MT (1997) Extracellular bacterial mineralization within the context of geomicrobiology. Microbiologia 13:161–172PubMedGoogle Scholar
  11. Beveridge TJ (1989) Role of cellular design in bacterial metal accumulation and mineralization. Annu Rev Microbiol 43:147–171PubMedCrossRefGoogle Scholar
  12. Beveridge TJ, Murray RGE (1980) Sites of metal deposition in the cell wall of Bacillus subtilis. J Bacteriol 141:876–887PubMedGoogle Scholar
  13. Bontognali TRR, Vasconcelos C, Warthmann RJ, Dupraz C, Bernasconi SM, McKenzie JA (2008) Microbes produce nanobacteria-like structures, avoiding cell entombment. Geology 36:663–666CrossRefGoogle Scholar
  14. Boquet E, Boronat A, Ramos-Cormenzana A (1973) Production of calcite (calcium carbonate) crystals by soil bacteria is a general phenomenon. Nature 246:527–529CrossRefGoogle Scholar
  15. Braissant O, Decho AW, Dupraz C, Glunk C, Przekop KM, Visscher PT (2007) Exopolymeric substances of sulfate-reducing bacteria: interactions with calcium at alkaline pH and implication for formation of carbonate minerals. Geobiology 5:401–411CrossRefGoogle Scholar
  16. Brennan ST, Lowenstein TK, Horita J (2004) Seawater chemistry and the advent of biocalcification. Geology 32:473–476CrossRefGoogle Scholar
  17. Cappitelli F, Toniolo L, Sansonetti A, Gulotta D, Ranalli G, Zanardini E, Sorlini C (2007) Advantages of using microbial technology over traditional chemical technology in removal of black crusts from stone surfaces of historical monuments. Appl Environ Microbiol 73:5671–5675PubMedCrossRefGoogle Scholar
  18. Castanier S, Métayer-Levrel L, Perthuisot J-P (1999) Ca-carbonates precipitation and limestone genesis-the microbiologist point of view. Sedimentary Geology 126:9–23CrossRefGoogle Scholar
  19. Costerton JW, Lewandowski Z, Caldwell DE, Korber DR, Lappin-Scott HM (1995) Microbial biofilms. Annu Rev Microbiol 49:711–745PubMedCrossRefGoogle Scholar
  20. De Muynck W, De Belie N, Verstraete W (2010) Microbial carbonate precipitation in construction materials: a review. Ecological Engineering 36:118–136CrossRefGoogle Scholar
  21. Decho AW (2010) Overview of biopolymer-induced mineralization: what goes on in biofilms? Ecological Engineering 36:137–144CrossRefGoogle Scholar
  22. Dominguez DC (2004) Calcium signalling in bacteria. Mol Microbiol 54:291–297PubMedCrossRefGoogle Scholar
  23. Douglas S, Beveridge TJ (1998) Mineral formation by bacteria in natural microbial communities. FEMS Microbiol Ecol 26:79–88CrossRefGoogle Scholar
  24. Dupraz C, Reid RP, Braissant O, Decho AW, Norman RS, Visscher PT (2009) Process of carbonate precipitation in modern microbial mats. Earth Sci Rev 96:141–162CrossRefGoogle Scholar
  25. Ehrlich HL (1996) Geomicrobiology, 3rd edn. Marcel Dekker, New YorkGoogle Scholar
  26. Ehrlich HL (1998) Geomicrobiology: its significance for geology. Earth Sci Rev 45:45–60CrossRefGoogle Scholar
  27. Ercole C, Cacchio P, Botta AL, Centi V, Lepidi A (2007) Bacterially induced mineralization of calcium carbonate: the role of exopolysaccharides and capsular polysaccharydes. Microsc Microanal 13:42–50PubMedCrossRefGoogle Scholar
  28. Fein JB, Daughney CJ, Yee N, Davis TA (1997) A chemical equilibrium model for metal adsorption onto bacterial surfaces. Geochim Cosmochim Acta 61:3319–3328CrossRefGoogle Scholar
  29. Folk RL (1993) SEM imaging of bacteria and nanobacteria in carbonate sediments and rocks. J Sedim Petrol 63:990–999Google Scholar
  30. Fortin D, Ferris FG, Beveridge TJ (1997) Surface-mediated mineral development by bacteria. Rev Mineral 35:161–180Google Scholar
  31. Friis AK, Davis TA, Figueira MM, Paquette J, Mucci A (2003) Influence of bacillus subtilis cell walls and EDTA on calcite dissolution rates and crystal surface features. Environ Sci Technol 37:2376–2382PubMedCrossRefGoogle Scholar
  32. Hammes F, Verstraete W (2002) Key role of pH and calcium metabolism in microbial carbonate precipitation. Rev Environ Sci Biotechnol 1:3–7CrossRefGoogle Scholar
  33. Head IM, Gray ND, Clarke KJ, Pickup RW, Jones JG (1996) The phylogenetic position and ultrastructure of the uncultured bacterium Achromatium okaliferum. Microbiology 142:2341–2354PubMedCrossRefGoogle Scholar
  34. Inui M, Suda M, Kimura S, Yasuda K, Suzuki H, Toda H, Yamamoto S, Okino S, Suzuki N, Yukawa H (2008) Expression of Clostridium acetobutylicum butanol synthetic genes in Escherichia coli. Appl Microbiol Biotechnol 77:1305–1316PubMedCrossRefGoogle Scholar
  35. Jiang W, Saxena A, Bongkeun S, Ward BB, Beveridge TJ, Myneni CB (2004) Elucidation of functional groups on Gram-positive and Gram-negative bacterial surfaces using infrared spectroscopy. Langmuir 20:11433–11442PubMedCrossRefGoogle Scholar
  36. Kawaguchi T, Decho AW (2002) A laboratory investigation of cyanobacterial extracellular polymeric secretions (EPS) in influencing CaCO3 polymorphism. J Crystal Growth 240:230–235CrossRefGoogle Scholar
  37. Little BJ, Wagner PA, Lewandowski Z (1997) Spatial relationship between bacteria and mineral surfaces. Rev Mineral 35:123–159Google Scholar
  38. Lowenstam HA, Weiner S (1989) On biomineralization. Oxford University Press, OxfordGoogle Scholar
  39. Mann S (2001) Biomineralization. Oxford University Press, New YorkGoogle Scholar
  40. Marvasi M, Visscher PT, Perito B, Mastromei G, Casillas-Martinez L (2010) Physiological requirements for carbonate precipitation during biofilm development of Bacillus subtilis etfA mutant. FEMS Microbiol Ecol 71:341–350PubMedCrossRefGoogle Scholar
  41. McConnaughey TA, Whelan JF (1997) Calcification generates protons for nutrient and bicarbonate uptake. Earth Sci Rev 42:95–117CrossRefGoogle Scholar
  42. Murray J, Irvine R (1889–1890) On coral reefs and other carbonate of lime formations in modern seas. Proc Roy Soc Lond A 17:79–109Google Scholar
  43. Naseem R, Wann KT, Holland IB, Campbell AK (2009) ATP regulates calcium efflux and growth in E. coli. J Mol Biol 391:42–56PubMedCrossRefGoogle Scholar
  44. Norris V, Grant S, Freestone P, Canvin J, Sheikh FN, Toth I, Trinei M, Modha K, Norman RI (1996) Calcium signalling in bacteria. J Bacteriol 178:3677–3682PubMedGoogle Scholar
  45. Pentecost A, Bauld J (1988) Nucleation of calcite on the sheaths of cyanobacteria using a simple diffusion cell. Geomicrobiol J 6:129–135CrossRefGoogle Scholar
  46. Perito B, Biagiotti L, Daly S, Galizzi A, Tiano P, Mastromei G (2000) Bacterial genes involved in calcite crystal precipitation. In: Ciferri O, Tiano P, Mastromei G (eds) Of microbes and art: The role of microbial communities in the degradation and protection of cultural heritage. Plenum Publisher, New York, pp 219–230Google Scholar
  47. Phoenix VR, Konhauser KO (2008) Benefits of bacterial biomineralization. Geobiology 6:303–308PubMedCrossRefGoogle Scholar
  48. Rivadeneyra MA, Delgado R, del Moral A, Ferrer MR, Ramos-Cormenzana A (1994) Precipitation of calcium carbonate by Vibrio spp. from an inland saltern. FEMS Microbiol Ecol 13:197–204CrossRefGoogle Scholar
  49. Rivadeneyra MA, Delgado G, Ramos-Cormenzana A, Delgado R (1998) Biomineralization of carbonates by Halomonas eurihalina in solid and liquid media with different salinities: crystal formation sequence. Res Microbiol 149:277–287PubMedCrossRefGoogle Scholar
  50. Rodriguez-Navarro C, Rodriguez-Gallego M, Ben Chekroun K, Gonzalez-Muňoz MT (2003) Conservation of ornamental stone by Myxococcus xanthus-induced carbonate biomineralization. Appl Environ Microbiol 69:2182–2193PubMedCrossRefGoogle Scholar
  51. Schultze-Lam S, Harauz G, Beveridge TJ (1992) Partecipation of a cyanobacterial S layer in fine-grain mineral formation. J Bacteriol 174:7971–7981PubMedGoogle Scholar
  52. Silver S (1997) The bacterial view of the periodic table: specific functions for all elements. Rev Mineral 35:345–360Google Scholar
  53. Simkiss K (1977) Biomineralization and detoxification. Calcif Tiss Res 24:199–200CrossRefGoogle Scholar
  54. Smith RJ (1995) Calcium and bacteria. Adv Microb Physiol 37:83–133PubMedCrossRefGoogle Scholar
  55. Tourney J, Ngwenya BT (2009) Bacterial extracellular polymeric substances (EPS) mediate CaCO3 morphology and polymorphism. Chem Geol 262:138–146CrossRefGoogle Scholar
  56. Vasconcelos C, McKenzie JA, Bernasconi S, Grujic D, Tien AJ (1995) Microbial mediation as a possible mechanism for natural dolomite formation at low temperatures. Nature 377:220–222CrossRefGoogle Scholar
  57. von Knorre H, Krumbein WE (2000) Bacterial calcification. In: Riding RE, Awramik SM (eds) Microbial sediments. Springer, Berlin Heidelberg, pp 25–31Google Scholar
  58. Weiner S, Dove PM (2003) An overview of biomineralization and the problem of the vital effect. Am Rev Mineral Geochem 54:1–31CrossRefGoogle Scholar
  59. Wright DT (1999) The role of sulphate-reducing bacteria and cyanobacteria in dolomite formation in distal ephemeral lakes of the Coorong region, South Australia. Sediment Geol 126(1–4):147–157CrossRefGoogle Scholar
  60. Yates KK, Robbins LL (1999) Radioisotope tracer studies of inorganic carbon and Ca in microbiologically derived CaCO3. Geochim Cosmochim Acta 63(1):129–136CrossRefGoogle Scholar
  61. Zamarreño DV, Inkpen R, May E (2009) Carbonate crystals precipitated by freshwater bacteria and their use as a limestone consolidant. Appl Environ Microbiol 75:5981–5990PubMedCrossRefGoogle Scholar
  62. Zavarzin GA (2002) Microbial geochemical calcium cycle. Microbiology: a translation of Mikrobiologiya 71:1–17Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Department of Evolutionary Biology “Leo Pardi”University of FlorenceFirenzeItaly
  2. 2.Department of Evolutionary Biology “Leo Pardi”University of FlorenceFirenzeItaly

Personalised recommendations