Skip to main content

Acidic Shell Proteins of the Mediterranean Fan Mussel Pinna nobilis

  • Chapter
  • First Online:
Molecular Biomineralization

Abstract

In molluscs, the shell secretion process is controlled by a set of extracellular macromolecules collectively called the shell matrix. The shell matrix, which is produced by the mantle epithelial cells during mineralization, is predominantly composed of proteins, glycoproteins, acidic polysaccharides, and chitin that precisely regulate the deposition of calcium carbonate outside the mantle cells. In the present paper, we focus on the shell of Pinna nobilis, the giant Mediterranean fan mussel, usually considered as a model for studying molluscan biomineralization processes. P. nobilis exhibits indeed a nacro-prismatic shell, the outer layer of which is constituted of the so-called “regular simple calcitic prisms,” according to Carter and Clark (1985). We review here the microstructural characteristics of the prisms and nacre and the biochemical properties of their associated matrices. In particular, the calcitic prisms of P. nobilis are characterized by a cortege of unusually acidic intraprismatic proteins, while the ones of the nacreous layer seem less acidic. A brief description of the molecular characterization of three acidic proteins, caspartin, calprismin and mucoperlin, is given. In particular, we show that extremely acidic intracrystalline proteins such as caspartin interact with calcium carbonate at different scales, from micrometric to crystal lattice levels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Addadi L, Moradian J, Shay E, Maroudas NG, Weiner S (1987) A chemical model for the cooperation of sulfates and carboxylates in calcite crystal nucleation: relevance to biomineralization. Proc Natl Acad Sci USA 84:2732–2736

    Article  PubMed  CAS  Google Scholar 

  • Addadi L, Joester D, Nudelman F, Weiner S (2006) Mollusk shell formation: a source of new concepts for understanding biomineralization processes. Chem Eur J 12:980–987

    Article  CAS  Google Scholar 

  • Afdhal NH, Ostrow JD, Koehler R, Niu N, Groen AK, Veis A, Nunes DP, Offner GD (1995) Interaction of bovine gallbladder mucin and calcium-binding protein: effect on calcium phosphate precipitation. Gastroenterology 109:1661–1672

    Article  PubMed  CAS  Google Scholar 

  • Akiyama M (1966) Conchiolin-constituent amino acids and shell structures of bivalved shells. Proc Jpn Acad 2:800–805

    Google Scholar 

  • Bafna S, Singh AP, Moniaux N, Eudy JD, Meza JL, Batra SK (2008) MUC4, a multifunctional transmembrane glycoprotein, induces oncogenic transformation of NIH3T3 mouse fibroblast cells. Cancer Res 68:9231–9238

    Article  PubMed  CAS  Google Scholar 

  • Biedermann W (1901) Untersuchungen über Bau und Entstehung der Molluskenschalen. Jena Z Naturwiss 36:1–164

    Google Scholar 

  • Boggild OB (1930) The shell structure of the mollusks. D Kgl Danske Vidensk Selsk Skrifter, Naturvidensk Og Mathem Afd, 9. Raekke, II.2:231–326

    Google Scholar 

  • Bowerbank JS (1844) On the structure of the shell of molluscous and conchiferous animals. Trans Microsc Soc Lond 1:123–154

    Google Scholar 

  • Bricteux-Grégoire S, Florkin M, Grégoire C (1968) Prism conchiolin of modern or fossil molluscan shells. An example of protein paleization. Comp Biochem Physiol 24:567–572

    Article  PubMed  Google Scholar 

  • Brisou J (1985) Les coquillages dans l’histoire des hommes. Ed. Ouest France, p 140

    Google Scholar 

  • Cabanellas-Reboredo M, Deudero S, Alos J, Valencia JM, March D, Hendriks IE, Alvarez E (2009) Recruitment of Pinna nobilis (Mollusca: Bivalvia) on artificial structures. Mar Biodiv Rec 2:1–5

    Article  Google Scholar 

  • Carpenter WB (1844) Report on the microscopic structure of shells. Rep Brit Assoc Adv Sci 14th meeting, pp 1–24

    Google Scholar 

  • Carter JG (1990) Skeletal Biomineralization: Patterns, Processes and Evolutionary Trends, vol I and II “Atlas and index”. Van Nostrand Reinhold, New York

    Google Scholar 

  • Carter JG, Clark GR II (1985) Classification and phylogenetic significance of molluscan shell microstructure. In: Broadhead TW (ed) Mollusks – Notes for a short course, University of Tennessee, Dept of Geological Sciences, Studies in Geology 13, pp 50–71

    Google Scholar 

  • Cayeux L (1916) Introduction à l’étude pétrographique des roches sédimentaires: mémoire pour servir à l’explication de la carte géologique détaillée de la France, vol 1&2. Ministère des Travaux Publics/Imprimerie Nationale, Paris

    Google Scholar 

  • Centoducati G, Tarsitano E, Bottalico A, Marvulli M, Lai OR, Crescenzo G (2007) Monitoring of the endangered Pinna nobilis Linné 1758 in the Mar Grande of Taranto (Ionian sea, Italy). Environ Monit Assess 131:339–347

    Article  PubMed  Google Scholar 

  • Checa AG, Rodriguez-Navarro AB, Esteban-Delgado FJ (2005) The nature and formation of calcitic columnar prismatic shell layers in pteriomorphian bivalves. Biomater 26:6404–6414

    Article  CAS  Google Scholar 

  • Cölfen H (2007) Non classical crystallization. In: Arias JL, Fernandez MS (eds) Biomineralization, from paleontology to materials science. Editorial Universitaria, Santiago de Chile, pp 515–526

    Google Scholar 

  • Cölfen H, Antonietti M (2005) Mesocrystals: inorganic superstructures made by highly parallel crystallization and controlled alignment. Angew Chem Int Ed 44:5576–5591

    Article  CAS  Google Scholar 

  • Collins MJ, Muyzer G, Curry GB, Sandberg P, Westbroek P (1991) Macromolecules in brachiopod shells: characterization and diagenesis. Lethaia 24:387–397

    Article  Google Scholar 

  • Cosentino A, Giacobbe S (2006) Shell ornament in Pinna nobilis and Pinna rudis (Bivalvia: Pteriomorpha). J Conchiol 39:135–140

    Google Scholar 

  • Cosentino A, Giacobbe S (2007a) Aspects of epizoobiontic mollusk assemblages on Pinna shells. Composition and structure. Cah Biol Mar 48:187–197

    Google Scholar 

  • Cosentino A, Giacobbe S (2007b) Aspects of epizoobiontic mollusk assemblages on Pinna shells. II. Does the Mediterranean P. nobilis represent an isle of biodiversity? Cah Biol Mar 49:161–173

    Google Scholar 

  • Crenshaw MA (1972) The soluble matrix from Mercenaria mercenaria shell. Biomineralization 6:6–11

    CAS  Google Scholar 

  • Cuif JP, Raguideau A (1982) Observation sur l’individualité cristallographique des prismes de Pinna nobilis L. C R Acad Sci Paris, sér II, 295:415–418

    Google Scholar 

  • Cuif JP, Dauphin Y, Denis A, Gaspard D, Keller JP (1980) Continuité et périodicité du réseau organique intraprismatique dans le test de Pinna muricata Linné (Lamellibranche). C R Séanc Acad Sci Paris, sér D, 290:759–762

    Google Scholar 

  • Cuif JP, Denis A, Gaspard D (1981) Recherche d’une méthode d’analyse ultrastructurale des tests carbonatés d’invertébrés. Bull Soc Geol Fr 9, XXIII, 5:525–534

    Google Scholar 

  • Cuif JP, Dauphin Y, Denis A, Gaspard D, Keller JP (1983a) Etude des caractéristiques de la phase minérale dans les structures prismatiques du test de quelques mollusques. Bull Mus Natn Hist Nat Paris 4e sér. 5, section A, 3:679–717

    Google Scholar 

  • Cuif JP, Denis A, Raguideau A (1983b) Observations sur les modalités de mise en place de la couche prismatique du test de Pinna nobilis L. par l’étude des caractéristiques de la phase minérale. Haliotis 13:131–141

    Google Scholar 

  • Cuif JP, Denis A, Flamand D, Frérotte B (1985) Etude ultrastructurale de la transition prismes/nacre dans le test de Pinna nobilis L (mollusque, lamellibranche). Sci Rep Port Cros natl Park Fr 11:95–107

    Google Scholar 

  • Cuif JP, Dauphin Y, Flamand D, Frérotte B, Gautret P (1986) La mesure localisée du taux de soufre comme indicateur de l’origine et de l’état diagénétique des biocristaux carbonatés. C R Acad Sci Paris, sér II, 303(3):251–256

    Google Scholar 

  • Cuif JP, Dauphin Y, Denis A, Gautret P, Lawniczak A, Raguideau A (1987a) Résultats récents concernant l’analyse des biocristaux carbonatés; implications biologiques et sédimentologiques. Bull Soc Geol Fr 8, t III, 2:269–288

    Google Scholar 

  • Cuif JP, Flamand D, Frérotte B, Chabin A, Raguideau A (1987b) Fractionnement de la matrice protéique intraprismatique chez Pinna nobilis L et composition en acides aminés des différentes phases. C R Acad Sci Paris, sér II, 304(9):475–478

    Google Scholar 

  • Cuif JP, Denis A, Frérotte B, Rekkab D (1988a) Gradient de concentration d’élements mineurs et séquence microstructurale dans le test de mollusques. C R Acad Sci Paris, sér II, 307:837–842

    Google Scholar 

  • Cuif JP, Dauphin Y, Gautret P (1988b) Corrélation entre l’organisation cristallographique des unités microstructurales formant le test des Mollusques et la masse moléculaire moyenne de leur phase organique soluble. C R Acad Sci Paris, sér II, 307:1943–1948

    Google Scholar 

  • Cuif JP, Gautret P, Marin F (1991) Correlation between the size of crystals and the molecular weight of organic fractions in the soluble matrices of mollusc, coral and sponge carbonate skeletons. In: Suga S, Nakahara H (eds) Mechanisms and Phylogeny of Mineralization in Biological Systems. Springer, Tokyo, pp 391–395

    Google Scholar 

  • Dauphin Y (2002) Comparison of the soluble matrices of the calcitic prismatic layer of Pinna nobilis (Mollusca, Bivalvia, Pteriomorpha). Comp Biochem Physiol A 132:577–590

    Article  CAS  Google Scholar 

  • Dauphin Y (2003) Soluble organic matrices of the calcitic prismatic shell layers of two pteriomorphid bivalves: Pinna nobilis and Pinctada margaritifera. J Biol Chem 278:15168–15177

    Article  PubMed  CAS  Google Scholar 

  • Dauphin Y, Cuif JP, Doucet J, Salomé M, Susini J, Williams CT (2003) In situ chemical speciation of sulfur in calcitic biominerals and the simple prism concept. J Struct Biol 142:272–280

    Article  PubMed  CAS  Google Scholar 

  • De Bournon E (1808) Traité complet de la chaux carbonatée et de l’aragonite, William Phillips (ed.) vol I. London

    Google Scholar 

  • De Gaulejac B (1993) Etude écophysiologique du mollusque bivalve méditerranéen Pinna nobilis L. Reproduction, croissance, respiration. Thèse 3ème cycle, Université d’Aix-Marseille III, p 220

    Google Scholar 

  • De Gaulejac B, Vicente N (1990) Ecologie de Pinna nobilis (L.) mollusque bivalve sur les côtes de Corse. Essais de transplantation et expériences en milieu contrôlé. Haliotis 10:83–100

    Google Scholar 

  • De Gaulejac B, Henry M, Vicente N (1995a) An ultrastructural study of gametogenesis of the marine bivalve Pinna nobilis (Linnaeus 1758) I. Oogenesis. J Mollus Stud 61:375–392

    Article  Google Scholar 

  • De Gaulejac B, Henry M, Vicente N (1995b) An ultrastructural study of gametogenesis of the marine bivalve Pinna nobilis (Linnaeus 1758) II. Spermatogenesis. J Mollus Stud 61:393–403

    Article  Google Scholar 

  • Esteban-Delgado FJ, Harper EM, Checa AG, Rodriguez-Navarro AB (2008) Origin and expansion of foliated microstructures in pteriomorph bivalves. Biol Bull 214:153–165

    Article  PubMed  Google Scholar 

  • Evans JS (2008) “Tuning in” to mollusk shell nacre- and prismatic-associated protein terminal sequences. Implications for biomineralization and the construction of high performance inorganic-organic composites. Chem Rev 108:4455–4462

    Article  PubMed  CAS  Google Scholar 

  • Foulquié M, Dupuy de la Grandrive R (2003) Mise en place d’un suivi des grandes nacres (Pinna nobilis) dans la zone Natura 2000 des “Posidonies du Cap d’Agde”, Hérault, France. In: Vicente N (ed) Mémoires de l’Institut Océanographique Paul Ricard, 1er Séminaire International sur la grande Nacre de Méditerranée : Pinna nobilis, 10–12 Octobre 2002, Institut Océanographique Paul Ricard, pp 49–55

    Google Scholar 

  • Frémy ME (1855) Recherches chimiques sur les os. Annales Chim Phys, 3ème sér. 43:47–107

    Google Scholar 

  • Frérotte B (1987) Etude de l’organisation et de la composition des biocristaux du test des lamellibranches. Thèse de 3ème Cycle, Laboratoire de Paléontologie, Université Paris XI, Orsay

    Google Scholar 

  • Garcia-March JR (2003) Contribution to the knowledge of the status of Pinna nobilis (L.) 1758 in Spanish Coasts. In: Vicente N (ed) Mémoires de l’Institut Océanographique Paul Ricard, 1er Séminaire International sur la grande Nacre de Méditerranée : Pinna nobilis, 10–12 Octobre 2002, Institut Océanographique Paul Ricard, pp 29–41

    Google Scholar 

  • Garcia-March JR, Carrascosa AMG, Pena AL (2002) In situ measurement of Pinna nobilis shells for age and growth studies: a new device. Mar Ecol 23:207–217

    Article  Google Scholar 

  • Garcia-March JR, Garcia-Carrascosa AM, Pena Cantero AL, Wang YG (2007) Population structure, mortality and growth of Pinna nobilis Linnaeus, 1758 (Mollusca, Bivalvia) at different depths in Moraira bay (Alicante, Western Mediterranean). Mar Biol 150:861–871

    Article  Google Scholar 

  • Gauthier JP, Caseiro J, Lasnier B (1994) Les perles rouges de Pinna nobilis. Revue de Gemmologie, A.F.G., 118:2–4; 119:2–4

    Google Scholar 

  • Giacobbe S (2002) Epibiontic mollusc communities on Pinna nobilis L. (Bivalvia, Mollusca). J Nat Hist 36:1385–1396

    Article  Google Scholar 

  • Giribet G (2008) Bivalvia. In: Ponder WF, Lindberg DR (eds) Phylogeny and Evolution of the Mollusca. University of California Press, Berkeley, pp 105–141

    Google Scholar 

  • Grases F, Llobera A (1998) Experimental model to study sedimentary kidney stones. Micron 29:105–111

    Article  PubMed  CAS  Google Scholar 

  • Gray JE (1835) Remarks on the difficulty of distinguishing certain genera of testaceous mollusca by their shell alone, and on the anomalies in regard to habitation observed in certain species. Phil Trans R Soc Lond 125:301–310

    Article  Google Scholar 

  • Grégoire C (1967) Sur la structure des matrices organiques des coquilles de mollusques. Biol Rev 42:653–688

    Article  PubMed  Google Scholar 

  • Grégoire C (1972) Structure of the molluscan shell. In: Florkin M, Scheer BT (eds) Chemical Zoology, vol VII, mollusca. Academic, New York, pp 45–102

    Google Scholar 

  • Grigor’ev DP (1965) Ontogeny of Minerals. Israel Program for Scientific Translation, Jerusalem, 250 pp

    Google Scholar 

  • Henry M, Vicente N, Houache N (1992) Caractérisation des hémocytes d’un mollusque bivalve marin, la nacre, Pinna nobilis L. 1758. In: Aspects Récents de la Biologie des Mollusques, Ifremer, Actes de Colloques 13, pp 97–106

    Google Scholar 

  • Jackson DJ, McDougall C, Green K, Simpson F, Wörheide G, Degnan BM (2006) A rapidly evolving secretome builds and patterns a sea shell. BMC Biol 4:40–49

    Article  PubMed  CAS  Google Scholar 

  • Karampelas S, Gauthier JP, Fritsch E, Notari F (2009) Characterization of some pearls of the Pinnidae family. Gems Gemol 45:221–223

    Article  Google Scholar 

  • Karny H (1913) Optische Untersuchungen zur Aufklärung der Struktur der Muschenschalen. I. Aviculidae, II. Unionidae. Sitzungsberichte der Akademie der Wissenschaften, Mathematisch-Naturwissenschaftliche Klasse. Wien 122:207–259

    Google Scholar 

  • Katsanevakis S (2007) Growth and mortality rates of the fan mussel Pinna nobilis in Lake Vouliagmeni (Korinthiakos Gulf, Greece): a generalized additive modelling approach. Mar Biol 152:1319–1331

    Article  Google Scholar 

  • Katsanevakis S, Thessalou-Legaki M (2009) Spatial distribution, abundance and habitat use of the protected fan mussel Pinna nobilis in Souda Bay, Crete. Aquat Biol 8:45–54

    Article  Google Scholar 

  • Keller JP (1981) Le dégagement du matériel minéral des tests d’invertébrés (Bivalves) par protéolyse enzymatique de la trame organique. Geobios 14:269–273

    Article  Google Scholar 

  • Keller JP, Dauphin Y (1983) Methodological aspects of the ultrastructural analysis of the organic and mineral components in mollusc shells. In: Westbroek P, De Jong EW (eds) Biomineralization and biological metal accumulation. D Reidel Publishing, Dordrecht, pp 255–260

    Google Scholar 

  • Kervadec G (1990) Estimation de la validité taxonomique du critère minéralogique par l’analyse des phases organiques solubles des biocristaux carbonatés des mollusques. Thèse de 3ème Cycle, Laboratoire de Paléontologie, Université Paris XI, Orsay

    Google Scholar 

  • Kniprath E (1981) Ontogeny of the molluscan shell field. Zool Scr 10:61–79

    Article  Google Scholar 

  • Kretsinger RH (1976) Calcium-binding proteins. Annu Rev Biochem 45:239–266

    Article  PubMed  CAS  Google Scholar 

  • Lechene de la Porte P, Domingo N, van Wijland M, Groen AK, Ostrow JD, Lafont H (1996) Distinct immuno-localization of mucin and other biliary proteins in human cholesterol gallstones. J Hepatol 25:339–348

    Article  Google Scholar 

  • Leydolt F (1856) Über die Struktur und Zusammensetzung der Krystalle des prismatischen Kalkhaloides nebst einem Anhang über die Struktur der kalkigen Teile einiger wirbellosen Tiere. Sitzungsberichte Mathematisch Naturwiss Klasse Kaiserlichen Akad Wiss Wien 19:10–32

    Google Scholar 

  • Maeder F, Halbeisen M (2001) Muschelseide: Auf der Suche nach einel vergessenen Material. Waffen Kostumkunde 43:33–41

    Google Scholar 

  • Mao Che L, Golubic S, Le Campion-Alsumard T, Payri CE (2001) Developmental aspects of biomineralization in the polynesian pearl oyster Pinctada margaritifera var. cumingii. Oceanol Acta 24:S37–S49

    Article  Google Scholar 

  • Marin F (1992). Essai de caractérisation chromatographique et immunologique des constituants organiques associés aux biocristaux carbonatés des squelettes de mollusques, cnidaires et spongiaires. Thèse de 3ème Cycle, Laboratoire de Paléontologie, Université Paris XI, Orsay

    Google Scholar 

  • Marin F (2003) Molluscan shell matrix characterization by preparative SDS-PAGE. Sci World J 3:342–347

    CAS  Google Scholar 

  • Marin F (2009) Biominéralisation de la coquille des mollusques : origine, évolution, formation. Mémoire d’Habilitation à Diriger des Recherches. Université de Bourgogne, Dijon, p 243

    Google Scholar 

  • Marin F, Luquet G (2005) Molluscan biomineralization: the proteinaceous shell constituents of Pinna nobilis L. Mater Sci Eng C 25:105–111

    Article  CAS  Google Scholar 

  • Marin F, Luquet G (2007) Unusually acidic proteins in biomineralization. In: Baeuerlein E (ed) Handbook of Biomineralization, vol 1, The Biology of Biominerals Structure Formation. Wiley-VCH, Weinheim, pp 273–290, Chapter 16

    Chapter  Google Scholar 

  • Marin F, Muyzer G, Dauphin Y (1994) Caractérisation électrophorétique et immunologique des matrices organiques solubles de deux Bivalves Ptériomorphes actuels, Pinna nobilis L. et Pinctada margaritifera (L.). C R Acad Sci Paris II 318:1653–1659

    CAS  Google Scholar 

  • Marin F, Gillibert M, Wesbroek P, Muyzer G, Dauphin Y (1999) Evolution: disjunct degeneration of immunological determinants. Geol Mijnbouw 78:135–139

    Article  Google Scholar 

  • Marin F, Corstjens P, de Gaulejac B, de Vrind-De JE, Westbroek P (2000) Mucins and molluscan calcification: molecular characterization of mucoperlin, a novel mucin-like protein of the nacreous shell-layer of the fan mussel Pinna nobilis (Bivalvia, Pteriomorphia). J Biol Chem 275:20667–20675

    Article  PubMed  CAS  Google Scholar 

  • Marin F, Pereira L, Westbroek P (2001) Large-scale purification of molluscan shell matrix. Prot Expres Purif 23:175–179

    Article  CAS  Google Scholar 

  • Marin F, de Groot K, Westbroek P (2003a) Screening molluscan cDNA expression libraries with anti-shell matrix antibodies. Prot Expres Purif 30:246–252

    Article  CAS  Google Scholar 

  • Marin F, Westbroek P, de Groot K (2003b) The proteinaceous constituents of the shell of Pinna nobilis L. In: Vicente N (ed) Mémoires de l’Institut Océanographique Paul Ricard, 1er Séminaire International sur la grande Nacre de Méditerranée: Pinna nobilis, 10–12 Octobre 2002, Institut Océanographique Paul Ricard, pp 77–90

    Google Scholar 

  • Marin F, Amons R, Guichard N, Stigter M, Hecker A, Luquet G, Layrolle P, Alcaraz G, Riondet C, Westbroek P (2005) Caspartin and calprismin, two proteins of the shell calcitic prisms of the Mediterranean fan mussel Pinna nobilis. J Biol Chem 280:33895–33908

    Article  PubMed  CAS  Google Scholar 

  • Marin F, Morin V, Knap F, Guichard N, Marie B, Luquet G, Westbroek P, Medakovic D (2007a) Caspartin: thermal stability and occurrence in mollusk calcified tissues. In: Arias JL, Fernandez MS (eds) Biomineralization, from paleontology to materials science. Editorial Universitaria, Santiago de Chile, pp 281–288

    Google Scholar 

  • Marin F, Pokroy B, Luquet G, Layrolle P, de Groot K (2007b) Protein mapping of calcium carbonate biominerals by immunogold. Biomater 28:2368–2377

    Article  CAS  Google Scholar 

  • Marin F, Luquet G, Marie B, Medakovic D (2008) Molluscan shell proteins: primary structure, origin and evolution. Curr Top Dev Biol 80:209–276

    Article  PubMed  CAS  Google Scholar 

  • Masuda F, Hirano M (1980) Chemical composition of some modern marine pelecypod shells. Sci Rep Inst Geosci Univ Tsukuba section B1:163–177

    Google Scholar 

  • Maurer P, Hohenester E, Engel J (1996) Extracellular calcium-binding proteins. Curr Opin Cell Biol 8:609–617

    Article  PubMed  CAS  Google Scholar 

  • Medakovic D (2000) Carbonic anhydrase activity and biomineralization in embryos, larvae and adult blue mussels Mytilus edulis L. Helgol Mar Res 54:1–6

    Article  Google Scholar 

  • Medioni E, Vicente N (2003) Etude de la cinétique des populations de Pinna nobilis L. 1758 sur le littoral méditerranéen français. In: Vicente N (ed) Mémoires de l’Institut Océanographique Paul Ricard, 1er Séminaire International sur la grande Nacre de Méditerranée: Pinna nobilis, 10–12 Octobre 2002, Institut Océanographique Paul Ricard, pp 43–48

    Google Scholar 

  • Meyer-Lüeckel H, Tschoppe P, Hopfenmüller W, Stenzel WR, Kielbassa AM (2006) Effect of polymers used in saliva substitutes on demineralized bovine enamel and dentin. Am J Dent 19:308–312

    PubMed  Google Scholar 

  • Moreteau JC, Vicente N (1982) Evolution d’une population de Pinna nobilis L. (Mollusca, Bivalvia). Malacologia 22:341–345

    Google Scholar 

  • Mutvei H (1970) Ultrastructure of the mineral and organic components of molluscan nacreous layers. Biomineral Res Rep 2:48–72

    Google Scholar 

  • Muyzer G, Westbroek P, De Vrind JPM, Tanke J, Vrijheid T, De Jong EW, Bruning JW, Wehmiller JF (1984) Immunology and organic geochemistry. Org Geochem 6:847–855

    Article  CAS  Google Scholar 

  • Nakahara H, Kakei M, Bevelander G (1980) Fine structure and amino acid composition of the organic “envelope” in the prismatic layer of some bivalve shells. Venus 39:167–177

    Google Scholar 

  • Nieuw-Amerongen AV, Oderkerk CH, Veerman ECI (1989) Interaction of human salivary mucins with hydroxyapatite. J Biol Buccale 17:85–92

    PubMed  CAS  Google Scholar 

  • Nudelman F, Gotliv BA, Addadi L, Weiner S (2006) Mollusk shell formation: mapping the distribution of organic matrix components underlying a single aragonite tablet in nacre. J Struct Biol 153:176–187

    Article  PubMed  CAS  Google Scholar 

  • Oaki Y, Imai H (2005) The hierarchical architecture of nacre and its mimetic material. Angew Chem Int Ed Engl 44:6571–6575

    Article  PubMed  CAS  Google Scholar 

  • Palmer AR (1992) Calcification in marine molluscs: how costly is it? Proc Natl Acad Sci USA 89:1379–1382

    Article  PubMed  CAS  Google Scholar 

  • Pokroy B, Fitch AN, Marin F, Kapon M, Adir N, Zolotoyabko E (2006) Anisotropic lattice distorsions in biogenic calcite induced by intra-crystalline organic molecules. J Struct Biol 155:96–103

    Article  PubMed  CAS  Google Scholar 

  • Pokroy B, Kapon M, Marin F, Adir N, Zolotoyabko E (2007) Protein-induced, previously unidentified twin form of calcite. Proc Natl Acad Sci USA 104:7337–7341

    Article  PubMed  CAS  Google Scholar 

  • Rabaoui L, Tlig-Zouari S, Ben Hassine OK (2007) Description de la faune épibionte de Pinna nobilis sur les côtes nord et est de la Tunisie. Rapp Comm Int Mer Medit 38:578

    Google Scholar 

  • Rabaoui L, Tlig-Zouari S, Ben Hassine OK (2008) Distribution and habitat of the fan mussel Pinna nobilis Linnaeus, 1758 (Mollusca: Bivalvia) along the northern and eastern Tunisian coasts. Cah Biol Mar 49:67–78

    Google Scholar 

  • Rabaoui L, Tlig-Zouari S, Cosentino A, Ben Hassine OK (2009) Associated fauna of the fan shell Pinna nobilis (Mollusca: Bivalvia) in the northern and eastern Tunisian coasts. Sci Mar 73:129–141

    Article  Google Scholar 

  • Ranson G (1952) Les huîtres et le calcaire. Calcaire et substratum organique chez les mollusques et quelques autres invertébrés marins. C R Acad Sci Paris 234:1485–1487

    Google Scholar 

  • Ranson G (1966) Substratum organique et matrice organique des prismes de la couche prismatique de la coquille de certains mollusques lamellibranches. C R Acad Sci Paris 262:1280–1282

    Google Scholar 

  • Riva A (2003) Approche méthodologique de quelques paramètres bioénergétiques chez Pinna nobilis. In: Vicente N (ed) Mémoires de l’Institut Océanographique Paul Ricard, 1er Séminaire International sur la grande Nacre de Méditerranée : Pinna nobilis, 10–12 Octobre 2002, Institut Océanographique Paul Ricard, pp 91–101

    Google Scholar 

  • Roche J, Ranson G, Eysseric-Lafon M (1951) Sur la composition des scléroprotéines des coquilles des mollusques (conchiolines). C R Séanc Soc Biol 145:1474–1477

    CAS  Google Scholar 

  • Römer O (1903) Untersuchungen über den feineren Bau einiger Muschelschalen. Z Wiss Zool 75:437–472

    Google Scholar 

  • Rose G (1858) Über die heteromorphen Zustände der Kohlensauren Kalkerde. II. Vorkommen des Aragonits und Kalkspaths in der organischen Natur: Physikalische Abhandlungen der Königlichen Akademie der Wissenschaften zu Berlin aus dem Jahre 1858:63–111

    Google Scholar 

  • Schmidt WJ (1923) Bau und Bildung der Perlmuttermasse. Zoologische Jahrbücher Abteilung Anat Ontogenie Tiere 45:1–148

    Google Scholar 

  • Schmidt WJ (1924) Die Bausteine des Tierkörpers in polarisiertem Lichte. F. Cohen, Bonn

    Google Scholar 

  • Schmidt WJ (1932) Studien über Pinnaperlen. I. Über Prismenperlen von Pinna nobilis. Z Morph Ökol Tiere Abt A 25:235–277

    Article  Google Scholar 

  • Siletic T, Peharda M (2003) Population study of the fan shell Pinna nobilis L. in Malo and Veliko Jezero of the Mljet National Park (Adriatic Sea). Sci Mar 67:91–98

    Article  Google Scholar 

  • Simkiss K, Wilbur KM (1989) Biomineralization. Cell biology and mineral deposition. Academic, New York

    Google Scholar 

  • Steiner G, Hammer S (2000) Molecular phylogeny of the Bivalvia inferred from 18 S rDNA sequences with particular reference to the Pteriomorphia. In: Harper EM, Taylor JD, Crame JA (eds) Evolutionary biology of the Bivalvia. Geological Society, London, pp 11–29, Geological Society Special Publication, 177

    Google Scholar 

  • Sudo S, Fujikawa T, Nagakura T, Ohkubo T, Sakagushi K, Tanaka M, Nakashima K (1997) Structures of mollusc shell framework proteins. Nature 387:563–564

    Article  PubMed  CAS  Google Scholar 

  • Tabak LA (1995) In defense of the oral cavity: structure, biosynthesis, and function of salivary mucins. Annu Rev Physiol 57:547–564

    Article  PubMed  CAS  Google Scholar 

  • Tabak LA, Levine MJ, Jain NK, Bryan AR, Cohen RE, Monte LD, Zawacki S, Nancollas GH, Slomiany A, Slomiany BL (1985) Adsorption of human salivary mucins to hydroxyapatite. Arch Oral Biol 30:423–427

    Article  PubMed  CAS  Google Scholar 

  • Taylor JD, Kennedy WJ, Hall A (1969) The shell structure and mineralogy of the Bivalvia. Introduction. Nuculacea-Trigonacea. Bull Brit Mus Nat Hist Zool Lond supplem 3:1–125

    Google Scholar 

  • Ubukata T (1994) Architectural constraints on the morphogenesis of prismatic structure in Bivalvia. Palaeontology 37:241–261

    Google Scholar 

  • Vicente N (2003) La grande nacre de Méditerranée Pinna nobilis. Présentation générale. In: Vicente N (ed) Mémoires de l’Institut Océanographique Paul Ricard, 1er Séminaire International sur la grande Nacre de Méditerranée : Pinna nobilis, 10–12 Octobre 2002, Institut Océanographique Paul Ricard, pp 7–16

    Google Scholar 

  • Vicente N, Riva A, Butler A (1992) Etude expérimentale préliminaire sur les échanges gazeux chez Pinna nobilis. In : Aspects Récents de la Biologie des Mollusques, Ifremer Brest, Actes de Colloques 13, pp 187

    Google Scholar 

  • Wada K (1961) Crystal growth of molluscan shells. Bull Natl Pearl Res Lab 7:703–828

    Google Scholar 

  • Wada K (1972) Nucleation and growth of aragonite crystals in the nacre of some bivalve molluscs. Biominer Res Rep 6:141–159

    CAS  Google Scholar 

  • Wada K (1980) Initiation of mineralization in bivalve mollusc. In: Omori M, Watabe N (eds) The mechanism of biomineralization in animals and plants. Tokay University Press, Tokyo, pp 79–92

    Google Scholar 

  • Weiner S (1983) Mollusk shell formation – Isolation of two organic matrix proteins associated with calcite deposition in the bivalve Mytilus californianus. Biochemistry 22:4139–4145

    Article  CAS  Google Scholar 

  • Weiner S, Hood L (1975) Soluble proteins of the organic matrix of mollusc shells: a potential template for shell formation. Science 190:987–989

    Article  PubMed  CAS  Google Scholar 

  • Weiss IM, Tuross N, Addadi L, Weiner S (2002) Mollusc larval shell formation: amorphous calcium carbonate is a precursor phase for aragonite. J Exp Zool 293:478–491

    Article  PubMed  CAS  Google Scholar 

  • Wetzel G (1900) Die organischen Substanzen der Schaalen von Mytilus und Pinna. Z. Phys Chem 29:386–410

    CAS  Google Scholar 

  • Wheeler AP, Rusenko KW, Sikes CS (1988) Organic matrix from carbonate biomineral as a regulator of mineralization. In: Sikes CS, Wheeler AP (eds) Chemical aspects of regulation of mineralization. University of South Alabama Publication Service, Mobile, Alabama, pp 9–13

    Google Scholar 

  • Wise SW (1970) Microarchitecture and mode of formation of nacre (mother-of-pearl) in pelecypods, gastropods, and cephalopods. Eclog Geol Helvet 63:775–797

    Google Scholar 

  • Zavodnik D (1967) Contribution to the ecology of Pinna nobilis L. (Moll. Bivalvia) in the Northern Adriatic Sea. Thalass Yugol 3:93–102

    Google Scholar 

  • Zolotoyabko E, Caspi EN, Fieramosca JS, Von Dreele RB, Marin F, Mor G, Addadi L, Weiner S, Politi Y (2010) Differences between bond lengths in biogenic and geological calcite. Cryst Growth Des 10:1207–1214

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This chapter is a contribution to the ANR project ACCRO-Earth, ref. BLAN06-2_159971, coordinator Gilles Ramstein, LSCE, Gif/Yvette, for the period 2007–2010. A complementary support was provided by the INTERRVIE program from INSU for the year 2010. Frédéric Marin thanks Professor Jean-Pierre Gauthier for providing the SEM picture of newly formed nacre tablets (Fig. 13.3f) and for scrupulous rereading. Alain Godon (UMR CNRS 5561) is also acknowleged for redesigning Fig. 13.7 from the paper of Checa et al. (2005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frédéric Marin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Marin, F., Narayanappa, P., Motreuil, S. (2011). Acidic Shell Proteins of the Mediterranean Fan Mussel Pinna nobilis . In: Müller, W. (eds) Molecular Biomineralization. Progress in Molecular and Subcellular Biology(), vol 52. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21230-7_13

Download citation

Publish with us

Policies and ethics