Skip to main content

Biosilica-Based Strategies for Treatment of Osteoporosis and Other Bone Diseases

  • Chapter
  • First Online:
Molecular Biomineralization

Abstract

Osteoporosis is a common disease in later life, which has become a growing public health problem. This degenerative bone disease primarily affects postmenopausal women, but also men may suffer from reduced bone mineral density. The development of prophylactic treatments and medications of osteoporosis has become an urgent issue due to the increasing proportion of the elderly in the population. Apart from medical/hormonal treatments, current strategies for prophylaxis of osteoporosis are primarily based on calcium supplementation as a main constituent of bone hydroxyapatite mineral. Despite previous reports suggesting an essential role in skeletal growth and development, the significance of the trace element silicon in human bone formation has attracted major scientific interest only rather recently. The interest in silicon has been further increased by the latest discoveries in the field of biosilicification, the formation of the inorganic silica skeleton of the oldest still extant animals on Earth, the sponges, which revealed new insights in the biological function of this element. Sponges make use of silicon to build up their inorganic skeleton which consists of biogenously formed polymeric silica (biosilica). The formation of biosilica is mediated by specific enzymes, silicateins, which have been isolated, characterized, and expressed in a recombinant way. Epidemiological studies revealed that dietary silicon reduces the risk of osteoporosis and other bone diseases. Recent results allowed for the first time to understand the molecular mechanism underlying the protective effect of silicic acid/biosilica against osteoporosis. Biosilica was shown to modulate the ratio of expression of two cytokines involved in bone formation–RANKL and osteoprotegerin. Hence, biosilica has been proposed to have a potential in prophylaxis and therapy of osteoporosis and related bone diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adachi JD (1997) Corticosteroid-induced osteoporosis. Am J Med Sci 313:41–49

    PubMed  CAS  Google Scholar 

  • Adler AJ, Berlyne GM (1986) Silicon metabolism II. Renal handling chronic renal failure patients. Nephron 44:36–39

    PubMed  CAS  Google Scholar 

  • Adler AJ, Etzion Z, Berlyne GM (1986) Uptake, distribution, and excretion of 31silicon in normal rats. Am J Physiol 251:E670–E673

    PubMed  CAS  Google Scholar 

  • Adkisson HD, Strauss-Schoenberger J, Gillis M, Wilkins R, Jackson M, Hruska KA (2000) Rapid quantitative bioassay of osteoinduction. J Orthop Res 18:503–511

    PubMed  CAS  Google Scholar 

  • Albrektsson T, Johansson C (2001) Osteoinduction, osteoconduction and osseointegration. Eur Spine J 10:S96–S101

    PubMed  Google Scholar 

  • Ammann P, Shen V, Robin B, Mauras Y, Bonjour JP, Rizzoli R (2004) Strontium ranelate improves bone resistance by increasing bone mass and improving architecture in intact female rats. J Bone Miner Res 19:2012–2020

    PubMed  CAS  Google Scholar 

  • Arumugam MQ, Ireland DC, Brooks RA, Rushton N, Bonfield W (2006) The effect of orthosilicic acid on collagen type I, alkaline phosphatase and osteocalcin mRNA expression in human bone-derived osteoblasts in vitro. Key Eng Mater 32:309–311

    Google Scholar 

  • Berlyne GM, Adler AJ, Ferran N, Bennett S, Holt J (1986) Silicon metabolism I: some aspects of renal silicon handling in normal man. Nephron 43:5–9

    PubMed  CAS  Google Scholar 

  • Bhattacharyya P, Vulcani BE (1980) Sodium-dependent silicate transport in the apochlorotic marine diatom. Proc Natl Acad Sci USA 77:6386–6390

    PubMed  CAS  Google Scholar 

  • Bhattacharjee H, Mukhopadhyay R, Thiyagarajan S, Rosen BP (2008) Aquaglyceroporins: ancient channels for metalloids. J Biol 7:33

    PubMed  Google Scholar 

  • Blick SK, Dhillon S, Keam SJ (2009) Spotlight on teriparatide in osteoporosis. BioDrugs 23:197–199

    PubMed  Google Scholar 

  • Borsje MA, Ren Y, de Haan-Visser HW, Kuijer R (2010) Comparison of low-intensity pulsed ultrasound and pulsed electromagnetic field treatments on OPG and RANKL expression in human osteoblast-like cells. Angle Orthod 80:498–503

    PubMed  Google Scholar 

  • Brady MC, Dobson PRM, Thavarajah M, Kanis JA (1991) Zeolite A stimulates proliferation and protein synthesis in human osteoblast-like cells and osteosarcoma cell line MG-63. J Bone Miner Res 6:S139

    Google Scholar 

  • Bretcanu O, Misra S, Roy I, Renghini C, Fiori F, Boccaccini AR, Salih V (2009) In vitro biocompatibility of 45 S5 Bioglass®-derived glass–ceramic scaffolds coated with poly(3-hydroxybutyrate). J Tissue Eng Regen Med 3:139–148

    PubMed  CAS  Google Scholar 

  • Bucay N, Sarosi I, Dunstan CR, Morony S, Tarpley J, Capparelli C, Scully S, Tan HL, Xu W, Lacey DL, Boyle WJ, Simonet WS (1998) Osteoprotegerin-deficient mice develop early onset osteoporosis and arterial calcification. Genes Dev 12:1260–1268

    PubMed  CAS  Google Scholar 

  • Calomme MR, Van den Berghe DA (1997) Supplementation of calves with stabilized orthosilicic acid. Effect on the Si, Ca, Mg, and P concentrations in serum and the collagen concentration in skin and cartilage. Biol Trace Elem Res 56:153–165

    PubMed  CAS  Google Scholar 

  • Calomme M, Geusens P, Demeester N, Behets GJ, D'Haese P, Sindambiwe JB, Van Hoof V, Van den Berghe D (2006) Partial prevention of long-term femoral bone loss in aged ovariectomized rats supplemented with choline-stabilized orthosilicic acid. Calcif Tissue Int 78:227–232

    PubMed  CAS  Google Scholar 

  • Calvo E, Castañeda S, Largo R, Fernández-Valle ME, Rodríguez-Salvanés F, Herrero-Beaumont G (2007) Osteoporosis increases the severity of cartilage damage in an experimental model of osteoarthritis in rabbits. Osteoarthr Cartil 15:69–77

    PubMed  CAS  Google Scholar 

  • Canalis E (2010) New treatment modalities in osteoporosis. Endocr Pract 29:1–23

    Google Scholar 

  • Carlisle EM (1972) Silicon: an essential element for the chick. Science 178:619–621

    PubMed  CAS  Google Scholar 

  • Carlisle EM (1976) In vivo requirement for silicon in articular cartilage and connective tissue formation in the chick. J Nutr 106:478–484

    PubMed  CAS  Google Scholar 

  • Carlisle EM (1981) Silicon in bone formation, vol 4. In: Simpson TL, Volcani BE (eds) Springer Verlag, New York, pp 69–94

    Google Scholar 

  • Carlisle EM (1986) Silicon as an essential trace element in animal nutrition. In: Ciba Foundation symposium 121. Wiley, Chichester, UK, pp 123–139

    Google Scholar 

  • Carlisle EM, Alpenfels WF (1980) A silicon requirement for normal growth for cartilage in culture. Fed Proc 39:787

    Google Scholar 

  • Carlisle EM, Alpenfels WF (1984) The role of silicon in proline synthesis. Fed Proc 43:680

    Google Scholar 

  • Carlisle EM, Garvey DL (1982) The effect of silicon on formation of extracellular matrix components by chondrocytes in culture. Fed Proc 41:461

    Google Scholar 

  • Carlisle EM, Berger JW, Alpenfels WF (1981) A silicon requirement for prolyl hydroxylase activity. Fed Proc 40:886

    Google Scholar 

  • Carlisle EM, Suchil C (1983) Silicon and ascorbate interaction in cartilage formation in culture. Fed Proc 42:398

    Google Scholar 

  • Cha JN, Shimizu K, Zhou Y, Christianssen SC, Chmelka BF, Stucky GD, Morse DE (1999) Silicatein filaments and subunits from a marine sponge direct the polymerization of silica and silicones in vitro. Proc Natl Acad Sci USA 96:361–365

    PubMed  CAS  Google Scholar 

  • Chen H, Clarkson BH, Sun K, Mansfield JF (2005) Self-assembly of synthetic hydroxyapatite nanorods into an enamel prism-like structure. J Colloid Interface Sci 288:97–103

    PubMed  CAS  Google Scholar 

  • Chen QZ, Thompson ID, Boccaccini AR (2006) 45 S5 Bioglass®-derived glass-ceramic scaffolds for bone tissue engineering. Biomaterials 27:2414–2425

    PubMed  CAS  Google Scholar 

  • Collin-Osdoby P (2004) Regulation of vascular calcification by osteoclast regulatory factors RANKL and osteoprotegerin. Circ Res 95:1046–1057

    PubMed  CAS  Google Scholar 

  • Cummings SR, Melton LJ (2002) Epidemiology and outcomes of osteoporotic fractures. Lancet 359:1761–1767

    PubMed  Google Scholar 

  • D'Haese PC, Shaheen FA, Huraid SO, Djukanovic L, Polenakovic MH, Spasovski G, Shikole A, Schurgers ML, Daneels RF, Lamberts LV, Van Landeghem GF, De Broe ME (1995) Increased silicon levels in dialysis patients due to high silicon content in the drinking water, inadequate water treatment procedures, and concentrate contamination: a multicentre study. Nephrol Dial Transplant 10:1838–1844

    PubMed  Google Scholar 

  • EFSA (2009) Choline-stabilised orthosilicic acid added for nutritional purposes to food supplements scientific opinion of the panel on food additives and nutrient sources added to food. The EFSA J 948:1–23

    Google Scholar 

  • Eglin D, Shafran KL, Livage J, Coradin T, Perry CC (2006) Comparative study of the influence of several silica precursors on collagen self-assembly and of collagen on ‘Si’ speciation and condensation. J Mater Chem 16:4220–4230

    CAS  Google Scholar 

  • Eliseev RA, Schwarz EM, Zuscik MJ, O’Keefe Regis J, Drissi H, Rosier RN (2006) Smad7 mediates inhibition of Saos2 osteosarcoma cell differentiation by NFκnB. Exp Cell Res 312:40–50

    PubMed  CAS  Google Scholar 

  • Faibish D, Ott SM, Boskey AL (2006) Mineral changes in osteoporosis: a review. Clin Orthop Relat Res 443:28–38

    PubMed  Google Scholar 

  • Fromigue O, Hay E, Modrowski D, Bouvet S, Jacquel A, Auberge P, Marie PJ (2006) RhoA GTPase inactivation by statins induces osteosarcoma cell apoptosis by inhibiting p42/p44-MAPKs-Bcl-2 signaling independently of BMP-2 and cell differentiation. Cell Death Differ 13:1845–1856

    PubMed  CAS  Google Scholar 

  • Gallagher JC (2008) Advances in bone biology and new treatments for bone loss. Maturitas 60:65–69

    PubMed  CAS  Google Scholar 

  • Gao T, Aro HT, Ylänen H, Vuorio E (2001) Silica-based bioactive glasses modulate expression of bone morphogenetic protein-2 mRNA in Saos-2 osteoblasts in vitro. Biomaterials 22:1475–1483

    PubMed  CAS  Google Scholar 

  • Gao BB, Clermont A, Rook S, Fonda SJ, Srinivasan VJ, Wojtkowski M, Fujimoto JG, Avery RL, Arrigg PG, Bursell SE, Aiello LP, Feener E (2007) Extracellular carbonic anhydrase mediates hemorrhagic retinal and cerebral vascular permeability through prekallikrein activation. Nat Med 13:181–188

    PubMed  CAS  Google Scholar 

  • Gardner MJ, Demetrakopoulos D, Shindle MK, Griffith MH, Lane JM (2006) Osteoporosis and skeletal fractures. HSS J 2:62–69

    PubMed  Google Scholar 

  • Glantz PO (1987) Comment. In: Williams DF (ed) Progress in biomedical engineering, vol 4. definitions in biomaterials. Elsevier, Amsterdam, p 24

    Google Scholar 

  • Gröger C, Sumper M, Brunner E (2007) Silicon uptake and metabolism of the marine diatom Thalassiosira pseudonana: solid-state 29Si NMR and fluorescence microscopic studies. J Struct Biol 161:55–63

    PubMed  Google Scholar 

  • Hausser HJ, Brenner RE (2005) Phenotypic instability of SaOS-2 cells in long-term culture. Biochem Biophys Res Commun 333:216–222

    PubMed  CAS  Google Scholar 

  • Hay E, Lemonnier J, Fromigue O, Guenou H, Pierre JM (2004) Bone morphogenetic protein receptor IB signaling mediates apoptosis independently of differentiation in osteoblastic cells. J Biol Chem 279:1650–1658

    PubMed  CAS  Google Scholar 

  • Hayman AR, Jones SJ, Boyde A, Foster D, Colledge WH, Carlton MB, Evans MJ, Cox TM (1996) Mice lacking tartrate-resistant acid phosphatase (Acp 5) have disrupted endochondral ossification and mild osteopetrosis. Development 122:3151–3162

    PubMed  CAS  Google Scholar 

  • Hench LL (1998) Bioceramics. J Am Ceram Soc 81:1705–1728

    CAS  Google Scholar 

  • Hench LL (2006) The story of bioglass. J Mater Sci Mater Med 17:967–978

    PubMed  CAS  Google Scholar 

  • Hench LL, Paschall HA (1973) Direct chemical bond of bioactive glass-ceramic materials to bone and muscle. J Biomed Mater Res 4:25–42

    Google Scholar 

  • Hench LL, Wilson J (1984) Surface-active biomaterials. Science 226:630–636

    PubMed  CAS  Google Scholar 

  • Hench LL, Polak JM (2002) Third-generation biomedical materials. Science 295:1014–1017

    PubMed  CAS  Google Scholar 

  • Hollberg K, Nordahl J, Hultenby K, Mengarelli-Widholm S, Andersson G, Reinholt FP (2005) Polarization and secretion of cathepsin K precede tartarate-resistant acid phosphatase secretion to the ruffled border area during the activation of matrix-resorbing clasts. J Bone Miner Metab 23:441–449

    PubMed  CAS  Google Scholar 

  • Hott M, de Pollak C, Modrowski DMPJ (1993) Short-term effects of organic silicon on trabecular bone in mature ovariectomized rats. Calcif Tissue Int 53:174–179

    PubMed  CAS  Google Scholar 

  • Iler RK (1979) Solubility, polymerisation, colloid and surface properties, and biochemistry. Wiley, New York

    Google Scholar 

  • Jin H, Heller DA, Sharma R, Strano MS (2009) Size-dependent cellular uptake and expulsion of single-walled carbon nanotubes: single particle tracking and a generic uptake model for nanoparticles. Nano 3:149–158

    CAS  Google Scholar 

  • Jugdaohsingh R (2007) Silicon and bone health. J Nutr Health Aging 11:99–110

    PubMed  CAS  Google Scholar 

  • Jugdaohsingh R, Reffitt DM, Oldham C, Day JP, Fifield LK, Thompson RPH, Powell JJ (2000) Oligomeric but not monomeric silica prevents aluminum absorption in humans. Am J Clin Nutr 71:944–949

    PubMed  CAS  Google Scholar 

  • Jugdaohsingh R, Anderson SH, Tucker KL, Elliott H, Kiel DP, Thompson RPH, Powell JJ (2002) Dietary silicon intake and absorption. Am J Clin Nutr 75:887–893

    PubMed  CAS  Google Scholar 

  • Jugdaohsingh R, Tucker KL, Qiao N, Cupples LA, Kiel DP, Powell JJ (2004) Silicon intake is a major dietary determinant of bone mineral density in men and pre-menopausal women of the Framingham offspring cohort. J Bone Miner Res 19:297–307

    PubMed  CAS  Google Scholar 

  • Kaandorp JA, Blom JG, Verhoef J, Filatov M, Postma M, Müller WEG (2008) Modelling genetic regulation of growth and form in a branching sponge. Proc Biol Sci 275:2569–2575

    PubMed  Google Scholar 

  • Kaluzhnaya OV, Belikov SI, Schröder HC, Wiens M, Giovine M, Krasko A, Müller IM, Müller WEG (2005) Dynamics of skeleton formation in the Lake Baikal sponge Lubomirskia baicalensis Part II. Molecular biological studies. Naturwissenschaften 92:134–138

    PubMed  CAS  Google Scholar 

  • Kanamaru F, Iwai H, Ikeda T, Nakajima A, Ishikawa I, Azuma M (2004) Expression of membrane-bound and soluble receptor activator of NF-kappa B ligand (RANKL) in human T cells. Immunol Lett 94:239–246

    PubMed  CAS  Google Scholar 

  • Katz JM, Nataraj C, Jaw R, Deigl E, Bursac P (2008) Demineralized bone matrix as an osteoinductive biomaterial and in vitro predictors of its biological potential. J Biomed Mater Res 89B:127–134

    Google Scholar 

  • Kelly SE, Di Benedetto A, Greco A, Howard CM, Sollars VE, Primerano DA, Valluri JV, Claudio PP (2010) Rapid selection and proliferation of CD133(+) cells from cancer cell lines: chemotherapeutic implications. PLoS ONE 5:e10035. doi:10.1371/journal.pone.0010035

    PubMed  Google Scholar 

  • Keeting PE, Oursler MJ, Wiegand KE, Bonde SK, Spelsberg TC, Riggs BL (1992) Zeolite-A increases proliferation, differentiation, and transforming growth-factor-b production in normal adult human osteoblast-like cells-in vitro. J Bone Miner Res 7:1281–1289

    PubMed  CAS  Google Scholar 

  • Khosla S (2001) Minireview: the OPG/RANKL/RANK system. Endocrinology 142:5050–5055

    PubMed  CAS  Google Scholar 

  • Khosla S, Amin S, Orwoll E (2008a) Osteoporosis in men. Endocr Rev 29:441–464

    PubMed  CAS  Google Scholar 

  • Khosla S, Westendorf JJ, Oursler MJ (2008b) Building bone to reverse osteoporosis and repair fractures. J Clin Invest 118:421–428

    PubMed  CAS  Google Scholar 

  • Kim M-H, Bae Y-J, Choi M-K, Chung Y-S (2009) Silicon supplementation improves the bone mineral density of calcium-deficient ovariectomized rats by reducing bone resorption. Biol Trace Elem Res 128:239–247

    PubMed  CAS  Google Scholar 

  • Krasko A, Batel R, Schröder HC, Müller IM, Müller WEG (2000) Expression of silicatein and collagen genes in the marine sponge Suberites domuncula is controlled by silicate and myotrophin. Eur J Biochem 267:4878–4887

    PubMed  CAS  Google Scholar 

  • Lane NE, Yao W (2009) Developments in the scientific understanding of osteoporosis. Arthritis Res Ther 11:228

    PubMed  Google Scholar 

  • Leibbrandt A, Penninger JM (2008) RANK/RANKL: regulators of immune responses and bone physiology. Ann NY Acad Sci 1143:123–150

    PubMed  CAS  Google Scholar 

  • Le Pennec G, Perovic S, Ammar SMA, Grebenjuk VA, Steffen R, Brümmer F, Müller WEG (2003) Cultivation of primmorphs from the marine sponge Suberites domuncula : morphogenetic potential of silicon and iron. A review J Biotechnol 100:93–108

    Google Scholar 

  • Leyhausen G, Lorenz B, Zhu H, Geurtsen W, Bohnensack R, Müller WEG, Schröder HC (1998) Inorganic polyphosphate in human osteoblast-like cells. J Bone Miner Res 13:803–812

    PubMed  CAS  Google Scholar 

  • Li Q, Kannan A, Wang W, Demayo FJ, Taylor RN, Bagchi MK, Bagchi IC (2007) Bone morphogenetic protein 2 functions via a conserved signaling pathway involving Wnt4 to regulate uterine decidualization in the mouse and the human. J Biol Chem 282:31725–31732

    PubMed  CAS  Google Scholar 

  • López-Alvarez M, Solla EL, González P, Serra J, León B, Marques AP, Reis RL (2009) Silicon-hydroxyapatite bioactive coatings (Si-HA) from diatomaceous earth and silica. Study of adhesion and proliferation of osteoblast-like cells. J Mater Sci Mater Med 20:1131–1136

    PubMed  Google Scholar 

  • Lorenz B, Schröder HC (2001) Mammalian intestinal alkaline phosphatase acts as highly active exopolyphosphatase. Biochim Biophys Acta 1547:254–261

    PubMed  CAS  Google Scholar 

  • MacDonald HM, Hardcastle AE, Jugdaohsingh R, Reid DM, Powell JJ (2005) Dietary silicon intake is associated with bone mineral density in premenopasual women and postmenopausal women taking HRT. J Bone Miner Res 20:S393

    Google Scholar 

  • Maehira F, Iinuma Y, Eguchi Y, Miyagi I, Teruya S (2008) Effects of soluble silicon compound and deep-sea water on biochemical and mechanical properties of bone and the related gene expression in mice. J Bone Miner Metab 26:446–455

    PubMed  CAS  Google Scholar 

  • Maehira F, Miyagi I, Eguchi Y (2009) Effects of calcium sources and soluble silicate on bone metabolism and the related gene expression in mice. Nutrition 25:581–589

    PubMed  CAS  Google Scholar 

  • Mann S (2001) Biomineralization: principles and concepts in bioinorganic materials chemistry. Oxford University Press, Oxford

    Google Scholar 

  • McNaughton SA, Bolton-Smith C, Mishra GD, Jugdaohsingh R, Powell JJ (2005) Dietary silicon intake in post-menopausal women. Br J Nutr 94:813–817

    PubMed  CAS  Google Scholar 

  • Matsuzaki K, Katayama K, Takahashi Y, Nakamura I, Udagawa N, Tsurukai T, Nishinakamura R, Toyama Y, Yabe Y, Hori M, Takahashi N, Suda T (1999) Human osteoclast-like cells are formed from peripheral blood mononuclear cells in a coculture with SaOS-2 cells transfected with the parathyroid hormone (PTH)/PTH-related protein receptor gene. Endocrinology 140:925–932

    PubMed  CAS  Google Scholar 

  • Morgan EF, Barnes GL, Einhorn TA (2008) The bone organ system: form and function. In: Marcus R, Feldman D, Nelson DA, Rosen CJ (eds) Osteoporosis., 3rd edn. Elsevier, San Diego, pp 3–25

    Google Scholar 

  • Mori K, Berreur M, Blanchard F, Chevalier C, Guisle-Marsollier I, Masson M, Rédini F, Heymann D (2007) Receptor activator of nuclear factor-κB ligand (RANKL) directly modulates the gene expression profile of RANK-positive Saos-2 human osteosarcoma cells. Oncol Rep 18:1365–1371

    PubMed  CAS  Google Scholar 

  • Morse DE (1999) Silicon biotechnology: harnessing biological silica production to construct new materials. Trends Biotechnol 17:230–232

    CAS  Google Scholar 

  • Müller WEG (2003) Silicon biomineralization: biology-biochemistry-molecular biology-biotechnology. Springer, Berlin

    Google Scholar 

  • Müller WEG, Rothenberger M, Boreiko A, Tremel W, Reiber A, Schröder HC (2005) Formation of siliceous spicules in the marine demosponge Suberites domuncula. Cell Tissue Res 321:285–297

    PubMed  Google Scholar 

  • Müller WE, Belikov SI, Tremel W, Perry CC, Gieskes WW, Boreiko A, Schröder HC (2006) Siliceous spicules in marine demosponges (example Suberites domuncula ). Micron 37:107–120

    PubMed  Google Scholar 

  • Müller WEG, Boreiko A, Wang XH, Krasko A, Geurtsen W, Custódio MR, Winkler T, Lukić-Bilela L, Link T, Schröder HC (2007a) Morphogenetic activity of silica and bio-silica on the expression of genes, controlling biomineralization using SaOS-2 cells. Calcif Tissue Int 81:382–393

    PubMed  Google Scholar 

  • Müller WEG, Wang XM, Belikov SI, Tremel W, Schloßmacher U, Natoli A, Brandt D, Boreiko A, Tahir MN, Müller IM, Schröder HC (2007b) Formation of siliceous spicules in demosponges: example Suberites domuncula. In: Bäuerlein E (ed) Handbook of biomineralization; Vol. 1: biological aspects and structure formation. Wiley-VCH, Weinheim, pp 59–82

    Google Scholar 

  • Müller WEG, Jochum K, Stoll B, Wang XH (2008a) Formation of giant spicule from quartz glass by the deep sea sponge Monorhaphis. Chem Mater 20:4703–4711

    Google Scholar 

  • Müller WEG, Schloßmacher U, Wang XH, Boreiko A, Brandt D, Wolf SE, Tremel W, Schröder HC (2008b) Poly(silicate)-metabolizing silicatein in siliceous spicules and silicasomes of demosponges comprises dual enzymatic activities (silica-polymerase and silica-esterase). FEBS J 275:362–370

    PubMed  Google Scholar 

  • Müller WEG, Wang X, Kropf K, Boreiko A, Schloßmacher U, Brandt D, Schröder HC, Wiens M (2008c) Silicatein expression in the hexactinellid Crateromorpha meyeri: the lead marker gene restricted to siliceous sponges. Cell Tissue Res 333:339–351

    PubMed  Google Scholar 

  • Müller WEG, Wang X, Burghard Z, Bill J, Krasko A, Boreiko A, Schloßmacher U, Schröder HC, Wiens M (2009a) Bio-sintering processes in hexactinellid sponges: fusion of biosilica in giant basal spicules from Monorhaphis chuni. J Struct Biol 168:548–561

    PubMed  Google Scholar 

  • Müller WE, Wang X, Cui FZ, Jochum KP, Tremel W, Bill J, Schröder HC, Natalio F, Schlossmacher U, Wiens M (2009b) Sponge spicules as blueprints for the Biofabrication of inorganic-organic composites and biomaterials. Appl Microbiol Biotechnol 83:397–413

    PubMed  Google Scholar 

  • Müller WEG, Wang X, Sinha B, Wiens M, Schröder HC, Jochum KP (2010) NanoSIMS: Insights into the organization of the proteinaceous scaffold within hexactinellid sponge spicules. Chembiochem 11:077–1082

    Google Scholar 

  • Natalio F, Link T, Müller WEG, Schröder HC, Cui FZ, Wang XH, Wiens M (2010) Bioengineering of the silica-polymerizing enzyme silicatein-α for a targeted application to hydroxyapatite. Acta Biomater 6:3720–3728

    PubMed  CAS  Google Scholar 

  • Nielsen FH (2008) A novel silicon complex is as effective as sodium metasilicate in enhancing the collagen-induced inflammatory response of silicon-deprived rats. J Trace Elem Med Biol 22:39–49

    PubMed  CAS  Google Scholar 

  • Oddie GW, Schenk G, Angel NZ, Walsh N, Guddat LW, de Jersey J, Cassady AI, Hamilton SE, Hume DA (2000) Structure, function, and regulation of tartrate-resistant acid phosphatase. Bone 27:575–584

    PubMed  CAS  Google Scholar 

  • Patlak M (2001) Bone builders: the discoveries behind preventing and treating osteoporosis. FASEB J 15:1677E–E

    PubMed  Google Scholar 

  • Perry CC (2003) Silicification: the processes by which organisms capture and mineralize silica. Rev Mineral Geochem 54:291–327

    CAS  Google Scholar 

  • Perry CC, Keeling-Tucker T (2000) Biosilification: the role of the organic matrix in structure control. J Biol Inorg Chem 5:537–550

    PubMed  CAS  Google Scholar 

  • Perry CC, Belton D, Shafran K (2003) Studies of biosilicas: structural aspects, chemical principles, model studies and the future. In: Müller WEG (ed) Silicon biomineralization: Biology – Biochemistry – Molecular biology – Biotechnology. Prog Mol Subcell Biol 33:269–299

    Google Scholar 

  • Postiglione L, DiDomenico G, Montagnani S, Di Spigna G, Salzano S, Castaldo C, Ramaglia L, Sbordone L, Rossi G (2003) Granulocyte macrophage colony-stimulating factor (GM-CSF) induces the osteoblastic differentiation of the human osteosarcoma cell line SaOS-2. Calcif Tissue Int 72:85–97

    PubMed  CAS  Google Scholar 

  • Raisz LG (2005) Pathogenesis of osteoporosis: concepts, conflicts, and prospects. J Clin Invest 115:3318–3325

    PubMed  CAS  Google Scholar 

  • Reffitt DM, Jugdoahsingh R, Thompson RPH, Powell JJ (1999) Silicic acid: its gastrointestinal uptake and urinary excretion in man and effects on aluminium excretion. J Inorg Biochem 76:141–147

    PubMed  CAS  Google Scholar 

  • Reffitt DM, Ogston N, Jugdaohsingh R, Cheung HF, Evans BA, Thompson RP, Powell JJ, Hampson GN (2003) Orthosilicic acid stimulates collagen type I synthesis and osteoblastic differentiation in human osteoblast-like cells in vitro. Bone 32:127–135

    PubMed  CAS  Google Scholar 

  • Reginster JY, Burlet N (2006) Osteoporosis: a still increasing prevalence. Bone 38(2 Suppl 1):S4–S9

    PubMed  Google Scholar 

  • Reid IR (2008) Anti-resorptive therapies for osteoporosis. Stem Cell Dev Biol 19:473–478

    CAS  Google Scholar 

  • Rodan GA, Martin TJ (1982) Role of osteoblasts in hormonal control of bone resorption - hypothesis [letter]. Calcif Tissue Int 34:311

    PubMed  CAS  Google Scholar 

  • Russell RG, Croucher PI, Rogers MJ (1999) Bisphosphonates: pharmacology, mechanisms of action and clinical uses. Osteoporos Int 9(Suppl 2):S66–S80

    PubMed  Google Scholar 

  • Sahin K, Onderci M, Sahin N, Balci TA, Gursu MF, Juturu V, Kucuk O (2006) Dietary arginine silicate inositol complex improves bone mineralization in quail. Poult Sci 85:486–492

    PubMed  CAS  Google Scholar 

  • Sambrook P, Cooper C (2006) Osteoporosis. Lancet 367:2010–2018

    PubMed  CAS  Google Scholar 

  • Sasaki S (2008) Introduction for special issue for aquaporin expanding the world of aquaporins: new members and new functions. Pflügers Arch Eur J Physiol 456:647–649

    CAS  Google Scholar 

  • Schröder HC, Krasko A, Batel R, Skorokhod A, Pahler S, Kruse M, Müller IM, Müller WEG (2000a) Stimulation of protein (collagen) synthesis in sponge cells by a cardiac myotrophin-related molecule from Suberites domuncula. FASEB J 14:2022–2031

    PubMed  Google Scholar 

  • Schröder HC, Kurz L, Müller WEG, Lorenz B (2000b) Polyphosphate in bone. Biochemistry (Moscow) 65:296–303

    Google Scholar 

  • Schröder HC, Krasko A, Le Pennec G, Adell T, Hassanein H, Müller IM, Müller WEG (2003) Silicase, an enzyme which degrades biogenous amorphous silica: Contribution to the metabolism of silica deposition in the demosponge Suberites domuncula. In: Müller WEG (ed) Silicon biomineralization: biology-biochemistry-molecular biology-biotechnology. Springer, Berlin, Prog Mol Subcell Biol 33:249–268

    Google Scholar 

  • Schröder HC, Perović-Ottstadt S, Rothenberger M, Wiens M, Schwertner H, Batel R, Korzhev M, Müller IM, Müller WEG (2004) Silica transport in the demosponge Suberites domuncula : Fluorescence emission analysis using the PDMPO probe and cloning of a potential transporter. Biochem J 381:665–673

    PubMed  Google Scholar 

  • Schröder HC, Borejko A, Krasko A, Reiber A, Schwertner H, Müller WEG (2005a) Mineralization of SaOS-2 cells on enzymatically (Silicatein) modified bioactive osteoblast-stimulating surfaces. J Biomed Mat Res B Appl Biomater 75B:387–392

    Google Scholar 

  • Schröder HC, Perović-Ottstadt S, Grebenjuk VA, Engel S, Müller IM, Müller WEG (2005b) Biosilica formation in spicules of the sponge Suberites domuncula : Synchronous expression of a gene cluster. Genomics 85:666–678

    PubMed  Google Scholar 

  • Schröder HC, Boreiko A, Korzhev M, Tahir MN, Tremel W, Eckert C, Ushijima H, Müller IM, Müller WEG (2006) Co-Expression and functional interaction of silicatein with galectin: matrix-guided formation of siliceous spicules in the marine demosponge Suberites domuncula. J Biol Chem 281:12001–12009

    PubMed  Google Scholar 

  • Schröder HC, Brandt D, Schlossmacher U, Wang X, Tahir MN, Tremel W, Belikov SI, Müller WEG (2007a) Enzymatic production of biosilica glass using enzymes from sponges: basic aspects and application in nanobiotechnology (material sciences and medicine). Naturwissenschaften 94:339–359

    PubMed  Google Scholar 

  • Schröder HC, Natalio F, Shukoor I, Tremel W, Schloßmacher U, Wang XH, Müller WEG (2007b) Apposition of silica lamellae during growth of spicules in the demosponge Suberites domuncula : biological/biochemical studies and chemical/biomimetical confirmation. J Struct Biol 159:325–334

    PubMed  Google Scholar 

  • Schröder HC, Wang XH, Tremel W, Ushijima H, Müller WEG (2008) Biofabrication of biosilica-glass by living organisms. Nat Prod Rep 25:455–474

    PubMed  Google Scholar 

  • Schröder HC, Wiens M, Schloßmacher U, Brandt D, Müller WEG (2010) Silicatein-mediated polycondensation of orthosilicic acid: Modeling of catalytic mechanism involving ring formation. Silicon, in press (DOI: 10.1007/s12633-010-9057-4)

    Google Scholar 

  • Schwarz K (1973) A bound form of silicon in glycosaminoglycans and polyuronides. Proc Natl Acad Sci USA 70:1608–1612

    PubMed  CAS  Google Scholar 

  • Schwarz K, Milne DB (1972) Growth promoting effects of silicon in rats. Nature 239:333–334

    PubMed  CAS  Google Scholar 

  • Seaborn CD, Nielsen FH (2002) Silicon deprivation decreases collagen formation in wounds and bone, and ornithine transaminase enzyme activity in liver. Biol Trace Elem Res 89:251–261

    PubMed  CAS  Google Scholar 

  • Shimizu K, Cha J, Stucky GD, Morse DE (1998) Silicatein alpha: cathepsin L-like protein in sponge biosilica. Proc Natl Acad Sci USA 95:6234–6238

    PubMed  CAS  Google Scholar 

  • Simonet WS, Lacey DL, Dunstan CR, Kelley M, Chang MS, Lüthy R, Nguyen HQ, Wooden S, Bennett L, Boone T, Shimamoto G, DeRose M, Elliott R, Colombero A, Tan HL, Trail G, Sullivan J, Davy E, Bucay N, Renshaw-Gegg L, Hughes TM, Hill D, Pattison W, Campbell P, Sander S, Van G, Tarpley J, Derby P, Lee R, Boyle WJ (1997) Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell 89:309–319

    PubMed  CAS  Google Scholar 

  • Singer A, Grauer A (2010) Denosumab for the management of postmenopausal osteoporosis. Postgrad Med 122:176–187

    PubMed  Google Scholar 

  • Spector TD, Calomme MR, Anderson SH, Clement G, Bevan L, Demeester N, Swaminathan R, Jugdaohsingh R, Berghe DA, Powell JJ (2008) Choline-stabilized orthosilicic acid supplementation as an adjunct to calcium/vitamin D3 stimulates markers of bone formation in osteopenic females: a randomized, placebo-controlled trial. BMC Musculoskelet Disord 9:85

    PubMed  Google Scholar 

  • Sripanyakorn S, Jugdaohsingh R, Elliott H, Walker C, Mehta P, Shoukru S, Thompson RPH, Powell JJ (2004) The silicon content of beer and its bioavailability in healthy volunteers. Brit J Nutr 91:403–409

    PubMed  CAS  Google Scholar 

  • Sripanyakorn S, Jugdaohsingh R, Dissayabutr W, Anderson SH, Thompson RP, Powell JJ (2009) The comparative absorption of silicon from different foods and food supplements. Br J Nutr 102:825–834

    PubMed  CAS  Google Scholar 

  • Stein GS, Lian JB, van Wijnen AJ, Stein JL, Montecino M, Javed A, Zaidi SK, Young DW, Choi J-Y, Pockwinse SM (2004) Runx2 control of organization, assembly and activity of the regulatory machinery for skeletal gene expression. Oncogene 23:4315–4329

    PubMed  CAS  Google Scholar 

  • Suda T, Takahashi N, Udagawa N, Jimi E, Gillespie MT, Martin TJ (1999) Modulation of osteoclast differentiation and function by the new members of the tumor necrosis factor receptor and ligand families. Endocr Rev 20:345–357

    PubMed  CAS  Google Scholar 

  • Tahir MN, Théato P, Müller WEG, Schröder HC, Janshoff A, Zhang J, Huth J, Tremel W (2004) Monitoring the formation of biosilica catalysed by histidin-tagged silicatein. Chem Commun 24:2848–2849

    Google Scholar 

  • Tanaka H, Nagai E, Murata H, Tsubone T, Shirakura Y, Sugiyama T, Taguchi T, Kawai S (2001) Involvement of bone morphogenic protein-2 (BMP-2) in the pathological ossification process of the spinal ligament. Rheumatology 40:1163–1168

    PubMed  CAS  Google Scholar 

  • Tang BM, Eslick GD, Nowson C, Smith C, Bensoussan A (2007) Use of calcium or calcium in combination with vitamin D supplementation to prevent fractures and bone loss in people aged 50 years and older: a meta-analysis. Lancet 370:657–666

    PubMed  CAS  Google Scholar 

  • Taranta A, Brama M, Teti A, De luca V, Scandurra R, Spera G, Agnusdei D, Termine JD, Migliaccio S (2002) The selective estrogen receptor modulator raloxifene regulates osteoclast and osteoblast activity in vitro. Bone 30:368–376

    PubMed  CAS  Google Scholar 

  • Teitelbaum SL (2000) Bone resorption by osteoclasts. Science 289:1504–1508

    PubMed  CAS  Google Scholar 

  • Thamatrakoln K, Alverson AJ, Hildebrand M (2006) Comparative sequence analysis of diatom silicon transporters: towards a mechanistic model of silicon transport. J Phycol 42:822–834

    CAS  Google Scholar 

  • Wada T, Nakashima T, Hiroshi N, Penninger JM (2006) RANKL-RANK signaling in osteoclastogenesis and bone disease. Trends Mol Med 12:17–25

    PubMed  CAS  Google Scholar 

  • Wang JC, Hemavathy K, Charles W, Zhang H, Dua PK, Novetsky AD, Chang T, Wong C, Jabara M (2004) Osteosclerosis in idiopathic myelofibrosis is related to the overproduction of osteoprotegerin (OPG). Exp Hematol 32:905–910

    PubMed  CAS  Google Scholar 

  • Wang XH, Hu S, Gan L, Wiens M, Müller WEG (2010) Sponges (Porifera) as living metazoan witnesses from the neoproterozoic: biomineralization and the concept of their evolutionary success. Terra Nova 22:1–11

    Google Scholar 

  • Weiner S, Traub W (1992) Bone structure: from angstroms to microns. FASEB J 6:879–885

    PubMed  CAS  Google Scholar 

  • Wetzel P, Hasse A, Papadopoulos S, Voipio J, Kaila K, Gros G (2001) Extracellular carbonic anhydrase activity facilitates lactic acid transport in rat skeletal muscle fibres. J Physiol 531:743–756

    PubMed  CAS  Google Scholar 

  • Wiens M, Belikov SI, Kaluzhnaya OV, Krasko A, Schröder HC, Perovic-Ottstadt S, Müller WEG (2006) Molecular control of serial module formation along the apical-basal axis in the sponge Lubomirskia baicalensis: silicateins, mannose-binding lectin and Mago Nashi. Dev Genes Evol 216:229–242

    PubMed  CAS  Google Scholar 

  • Wiens M, Bausen M, Natalio F, Link T, Schlossmacher U, Müller WEG (2009) The role of the silicatein-α interactor silintaphin-1 in biomimetic biomineralization. Biomaterials 30:1648–1656

    PubMed  CAS  Google Scholar 

  • Wiens M, Wang X, Natalio F, Schröder HC, Schloßmacher U, Wang S, Korzhev M, Geurtsen W, Müller WEG (2010a) Bioinspired fabrication of bio-silica-based bone substitution materials. Adv Eng Mater 12:B438–B450

    Google Scholar 

  • Wiens M, Wang X, Schloßmacher U, Lieberwirth I, Glasser G, Ushijima H, Schröder HC, Müller WEG (2010b) Osteogenic potential of biosilica on human osteoblast-like (SaOS-2) cells. Calcif Tissue Int 87:513–524

    PubMed  CAS  Google Scholar 

  • Wiens M, Wang X, Schröder HC, Kolb U, Schloßmacher U, Ushijima H, Müller WEG (2010c) The role of biosilica in the osteoprotegerin/RANKL ratio in human osteoblast-like cells. Biomaterials 31:7716–7725

    PubMed  CAS  Google Scholar 

  • Woesz A, Weaver JC, Kazanci M, Dauphin Y, Aizenberg J, Morse DE, Fratzl P (2006) Hierarchical assembly of the siliceous skeletal lattice of the hexactinellid sponge Euplectella aspergillum. J Mater Res 21:2068–2078

    CAS  Google Scholar 

  • Wittrant Y, Theoleyre S, Chipoy C, Padrines M, Blanchard F, Heymann D, Redini F (2004) RANKL/RANK/OPG: new therapeutic targets in bone tumours and associated osteolysis. Biochim Biophys Acta 1704:49–57

    PubMed  CAS  Google Scholar 

  • Wolf SE, Schlossmacher U, Pietuch A, Mathiasch B, Schröder HC, Müller WEG, Tremel W (2010) Formation of silicones mediated by the sponge enzyme silicatein-α. Dalton Trans 39:9245–9249

    PubMed  CAS  Google Scholar 

  • Zou S, Ireland D, Brooks RA, Rushton N, Best S (2009) The effects of silicate ions on human osteoblast adhesion, proliferation, and differentiation. J Biomed Mater Res B Appl Biomater 90:123–130

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Bundesministerium für Bildung und Forschung (project “Center of Excellence BIOTECmarin”), the Deutsche Forschungsgemeinschaft (Schr 277/10-1), the European Commission (no PITN-GA-2008-215507 – BIOMINTEC), the BiomaTiCS consortium of the Mainz University Medical Center, the Johannes Gutenberg University Research Center for Complex Matter (COMATT), and the International S & T Cooperation Program of China (Grant No. 2008DFA00980). W.E.G.M. is a holder of an ERC Advanced Grant (no 268476 BIOSILICA).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Heinz C. Schröder or Werner E. G. Müller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schröder, H.C., Wiens, M., Wang, X., Schloßmacher, U., Müller, W.E.G. (2011). Biosilica-Based Strategies for Treatment of Osteoporosis and Other Bone Diseases. In: Müller, W. (eds) Molecular Biomineralization. Progress in Molecular and Subcellular Biology(), vol 52. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21230-7_10

Download citation

Publish with us

Policies and ethics