Advertisement

Magnetite Biomineralization in Bacteria

  • Jens Baumgartner
  • Damien FaivreEmail author
Chapter
Part of the Progress in Molecular and Subcellular Biology book series (PMSB, volume 52)

Abstract

Magnetotactic bacteria are able to biomineralize magnetic crystals in intracellular organelles, so-called “magnetosomes.” These particles exhibit species- and strain-specific size and morphology. They are of great interest for biomimetic nanotechnological and biotechnological research due to their fine-tuned magnetic properties and because they challenge our understanding of the classical principles of crystallization. Magnetotactic bacteria use these highly optimized particles, which form chains within the bacterial cells, as a magnetic field actuator, enabling them to navigate. In this chapter, we discuss the current biological and chemical knowledge of magnetite biomineralization in these bacteria. We highlight the extraordinary properties of magnetosomes and some resulting potential applications.

Keywords

Iron Uptake Magnetotactic Bacterium Magnetite Crystal Iron Oxide Phase Cation Diffusion Facilitator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

Prof. Müller is acknowledged for inviting us to contribute to this book. We thank Nicolas Menguy for the TEM images of magnetosomes in Fig. 1.3. The authors want to thank Prof. Fratzl for offering them the opportunity to join his department. Discussions with current and older group members were appreciated. Corrections and suggestions on the chapter by Kevin Eckes and Matthew Harrington are acknowledged. Research in the laboratory is supported by the Deutsche Forschungsgemeinschaft (DFG), the European Union, and the Max Planck Society.

References

  1. Amann R, Peplies J, Schüler D (2007) Diversity and taxonomy of magnetotactic bacteria. In: Schüler D (ed) Magnetoreception and magnetosomes in bacteria. Springer, HeidelbergGoogle Scholar
  2. Amemiya Y, Tanaka T, Yoza B, Matsunaga T (2005) Novel detection system for biomolecules using nano-sized bacterial magnetic particles and magnetic force microscopy. J Biotechnol 120:308–314PubMedGoogle Scholar
  3. Amemiya Y, Arakaki A, Staniland SS, Tanaka T, Matsunaga T (2007) Controlled formation of magnetite crystal by partial oxidation of ferrous hydroxide in the presence of recombinant magnetotactic bacterial protein Mms6. Biomater 28:5381–5389Google Scholar
  4. Arakaki A, Webbs J, Matsunaga T (2003) A novel protein tightly bound to bacterial magnetite particles in Magnetospirillum magnetotacticum strain AMB-1. J Biol Chem 278:8745–8750PubMedGoogle Scholar
  5. Balkwill D, Maratea D, Blakemore RP (1980) Ultrastructure of a magnetotactic spirillum. J Bacteriol 141:1399–1408PubMedGoogle Scholar
  6. Bazylinski DA, Frankel RB (2004) Magnetosome formation in prokaryotes. Nat Rev Microbiol 2:217–230PubMedGoogle Scholar
  7. Bellini S (2009a) Further studies on “magnetosensitive bacteria”. Chi J Oceanogr Limnol 27:6–12Google Scholar
  8. Bellini S (2009b) On a unique behavior of freshwater bacteria. Chi J Oceanogr Limnol 27:3–5Google Scholar
  9. Blakemore RP (1975) Magnetotactic bacteria. Science 190:377–379PubMedGoogle Scholar
  10. Blakemore RP (1982) Magnetotactic bacteria. Ann Rev Microbiol 36:217–238Google Scholar
  11. Blakemore RP, Maratea D, Wolfe RS (1979) Isolation and pure culture of freshwater magnetic spirillum in chemically defined medium. J Bacteriol 140:720–729PubMedGoogle Scholar
  12. Calugay RJ, Miyashita H, Okamura Y, Matsunaga T (2003) Siderophore production by the magnetic bacterium Magnetospirillum magneticum AMB-1. FEMS Microbiol Let 218:371–375Google Scholar
  13. Calugay RJ, Okamura Y, Wahyudi AT, Takeyama H, Matsunaga T (2004) Siderophore production of a periplasmic transport binding protein kinase gene defective mutant of Magnetospirillum magneticum AMB-1. Biochem Biophys Res Comm 323:852–857PubMedGoogle Scholar
  14. Calugay RJ, Takeyama H, Mukoyama D, Fukuda Y, Suzuki T, Kanoh K, Matsunaga T (2006) Catechol siderophore excretion by magnetotactic bacterium Magnetospirillum magneticum AMB-1. J Biosci Bioeng 101:445–447PubMedGoogle Scholar
  15. Cartron ML, Maddocks S, Gillingham P, Craven CJ, Andrews SC (2006) Feo – transport of ferrous iron into bacteria. Biometals 19:143–157PubMedGoogle Scholar
  16. Ceyhan B, Alhorn P, Lang C, Schüler D, Niemeyer CM (2006) Semisynthetic biogenic magnetosome nanoparticles for the detection of proteins and nucleic acids. Small 2:1251–1255PubMedGoogle Scholar
  17. Cornell RM, Schwertmann U (2003) The Iron Oxides. Wiley-VCH Verlag GmBH & Co. KGaA, WeinheimGoogle Scholar
  18. de Nooijer LJ, Toyofuku T, Kitazato H (2009) Foraminifera promote calcification by elevating their intracellular pH. Proc Natl Acad Sci U S A 106:15374–15378PubMedGoogle Scholar
  19. Devouard B, Pósfai M, Hua X, Bazylinski DA, Frankel RB, Buseck PR (1998) Magnetite from magnetotactic bacteria: Size distributions and twinning. Am Miner 83:1387–1398Google Scholar
  20. Dubbels BL, DiSpirito AA, Morton JD, Semrau JD, Neto JNE, Bazylinski DA (2004) Evidence for a copper-dependent iron transport system in the marine, magnetotactic bacterium strain MV-1. Microbiology 150:2931–2945PubMedGoogle Scholar
  21. Dunin-Borkowski RE, McCartney MR, Frankel RB, Bazylinski DA, Pósfai M, Buseck PR (1998) Magnetic microstructure of magnetotactic bacteria by electron holography. Science 282:1868–1870PubMedGoogle Scholar
  22. Dunlop DJ, Özdemir O (1997) Rock magnetism: fundamentals and frontiers. Cambridge University Press, CambridgeGoogle Scholar
  23. Escolar L, Perez-Martin J, De Lorenzo V (1999) Opening the iron box: transcriptional metalloregulation by the fur protein. J Bacteriol 181:6223–6229PubMedGoogle Scholar
  24. Faivre D, Schüler D (2008) Magnetotactic bacteria and magnetosomes. Chem Rev 108:4875–4898PubMedGoogle Scholar
  25. Faivre D, Agrinier P, Menguy N, Zuddas P, Pachana K, Gloter A, Laval J-Y, Guyot F (2004) Mineralogical and isotopic properties of inorganic nanocrystalline magnetites. Geochim Cosmochim Acta 68:4395–4403Google Scholar
  26. Faivre D, Böttger LH, Matzanke BF, Schüler D (2007) Intracellular magnetite biomineralization in bacteria proceeds by a distinct pathway involving membrane-bound ferritin and an iron(II) species. Angew Chem Int Ed 46:8495–8499Google Scholar
  27. Faivre D, Menguy N, Pósfai M, Schüler D (2008) Effects of environmental parameters on the physical properties of fast-growing magnetosomes. Am Mineral 93:463–469Google Scholar
  28. Farina M, Esquivel DMS, Lins de Barros H (1990) Magnetic iron-sulphur crystals from a magnetotactic microorganism. Nature 343:256–258Google Scholar
  29. Fischer A, Schmitz M, Aichmayer B, Fratzl P, Faivre D (2011) Structural purity of magnetite nanoparticles in magnetotactic bacteria. J R Soc Interface 8:1011–1018Google Scholar
  30. Flies CB, Jonkers HM, de Beer D, Bosselmann K, Böttcher ME, Schüler D (2005) Diversity and vertical distribution of magnetotactic bacteria along chemical gradients in freshwater microcosms. FEMS Microbiol Ecol 52:185–195PubMedGoogle Scholar
  31. Frankel RB, Bazylinski DA (2003) Biologically induced mineralization by bacteria. Rev Mineral Geochem 54:95–114Google Scholar
  32. Frankel RB, Blakemore RP (1991) Iron Biominerals. Plenum Press, New York and LondonGoogle Scholar
  33. Frankel RB, Blakemore R, Wolfe RS (1979) Magnetite in freshwater magnetotactic bacteria. Science 203:1355–1356PubMedGoogle Scholar
  34. Frankel RB, Papaefthymiou GC, Blakemore RP, O’Brien W (1983) Fe3O4 precipitation in magnetotactic bacteria. Biochim Biophys Acta 763:147–159Google Scholar
  35. Frankel RB, Bazylinski DA, Johnson MS, Taylor BL (1997) Magneto-aerotaxis in marine coccoid bacteria. Biophy J 73:994–1000Google Scholar
  36. Frankel RB, Williams TJ, Bazylinski DA (2007) Magneto-Aerotaxis. In: Schüler D (ed) Magnetoreception and magnetosomes in bacteria. Springer, HeidelbergGoogle Scholar
  37. Gorby YA, Beveridge TJ, Blakemore R (1988) Characterization of the bacterial magnetosome membrane. J Bacteriol 170:834–841PubMedGoogle Scholar
  38. Grünberg K, Müller EC, Otto A, Reszka R, Linder D, Kube M, Reinhardt R, Schüler D (2004) Biochemical and proteomic analysis of the magnetosome membrane in Magnetospirillum gryphiswaldense. Appl Eviron Microbiol 70:1040–1050Google Scholar
  39. Heyen U, Schüler D (2003) Growth and magnetosome formation by microaerophilic Magnetospirillum strains in an oxygen-controlled fermentor. Appl Microbiol Biotechnol 61:536–544PubMedGoogle Scholar
  40. Isambert A, Menguy N, Larquet E, Guyot F, Valet J-P (2007) Transmission electron microscopy study of magnetites in a freshwater population of magnetotactic bacteria. Am Mineral 92:621–630Google Scholar
  41. Jogler C, Schüler D (2007) Genetic analysis of magnetosome biomineralization. In: Schüler D (ed) Magnetoreception and magnetosomes in bacteria. Springer, HeidelbergGoogle Scholar
  42. Jogler C, Schüler D (2009) Genomics, genetics, and cell biology of magnetosome formation. Annu Rev Microbiol 63:501–521PubMedGoogle Scholar
  43. Jogler C, Kube M, Schübbe S, Ullrich S, Teeling H, Bazylinski DA, Reinhardt R, Schüler D (2009) Comparative analysis of magnetosome gene clusters in magnetotactic bacteria provides further evidence for horizontal gene transfer. Environ Microbiol 11:1267–1277PubMedGoogle Scholar
  44. Johnsen S, Lohmann KJ (2005) The physics and neurobiology of magnetoreception. Nat Rev Neurosci 6:703–712PubMedGoogle Scholar
  45. Keim CN, Lins U, Farina M (2009) Manganese in biogenic magnetite crystals from magnetotactic bacteria. FEMS Microbiol Lett 292:250–253PubMedGoogle Scholar
  46. Komeili A (2007) Molecular mechanisms of magnetosome formation. Ann Rev Biochem 76:351–366PubMedGoogle Scholar
  47. Komeili A, Vali H, Beveridge TJ, Newman D (2004) Magnetosome vesicles are present prior to magnetite formation and MamA is required for their activation. Proc Natl Acad Sci USA 101:3839–3844PubMedGoogle Scholar
  48. Komeili A, Li Z, Newman DK, Jensen GJ (2006) Magnetosomes are cell membrane invaginations organized by the actin-like protein mamK. Science 311:242–245PubMedGoogle Scholar
  49. Kuhara M, Takeyama H, Tanaka T, Matsunaga T (2004) Magnetic cell separation using antibody binding with protein a expressed on bacterial magnetic particles. Anal Chem 76:6207–6213PubMedGoogle Scholar
  50. Kundu S, Kale AA, Banpurkar AG, Kulkarni GR, Ogale SB (2009) On the change in bacterial size and magnetosome features for Magnetospirillum magnetotacticum (MS-1) under high concentrations of zinc and nickel. Biomater 30:4211–4218Google Scholar
  51. Lang C, Schüler D (2008) Expression of green fluorescent protein fused to magnetosome proteins in microaerophilic magnetotactic bacteria. Appl Environ Microbiol 74:4944–4953PubMedGoogle Scholar
  52. Lang C, Schüler D, Faivre D (2007) Synthesis of magnetite nanoparticles for bio- and nanotechnology: genetic engineering and biomimetics of bacterial magnetosomes. Macromol Biosci 7:144–151PubMedGoogle Scholar
  53. Laurent S, Forge D, Port M, Roch A, Robic C, Vander Elst L, Muller RN (2008) Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem Rev 108:2064–2110PubMedGoogle Scholar
  54. Lins U, McCartney MR, Farina M, Frankel RB, Buseck PR (2005) Habits of magnetosome crystals in coccoid magnetotactic bacteria. Appl Environ Microbiol 71:4902–4905PubMedGoogle Scholar
  55. Lisy MR, Hartung A, Lang C, Schüler D, Richter W, Reichenbach JR, Kaiser WA, Hilger I (2007) Fluorescent bacterial magnetic nanoparticles as bimodal contrast agents. Invest Radiol 42:235–241PubMedGoogle Scholar
  56. Lowenstam HA (1967) Lepidocrocite an apatite mineral and magnetite in teeth of chitons (Polyplacophora). Science 156:1373–1375PubMedGoogle Scholar
  57. Mann S, Sparks N, Blakemore R (1987a) Structure, morphology and crystal growth of anisotropic magnetite crystals in magnetotactic bacteria. Proc R Soc Lond B 231:477–487Google Scholar
  58. Mann S, Sparks N, Blakemore R (1987b) Ultrastructure and characterization of anisotropic magnetic inclusions in magnetotactic bacteria. Proc R Soc Lond B 231:469–476Google Scholar
  59. Mann S, Sparks NHC, Frankel RB, Bazlinski DA, Jannasch HW (1990) Biomineralization of ferrimagnetic greigite (Fe3S4) and iron pyrite (FeS2) in a magnetotactic bacterium. Nature 343:258–261Google Scholar
  60. Matsunaga T, Arakaki A (2007) Molecular bioengineering of bacterial magnetic particles for biotechnological applications. In: Schüler D (ed) Magnetoreception and magnetosomes in bacteria. Springer, HeidelbergGoogle Scholar
  61. Matsunaga T, Kamiya S (1987) Use of magnetic particles isolated from magnetotactic bacteria for enzyme immobilization. Appl Microbiol Biotechnol 26:328–332Google Scholar
  62. Matsunaga T, Sakaguchi T, Tadokoro F (1991) Magnetite formation by a magnetic bacterium capable of growing aerobically. Appl Microbiol Biotechnol 35:651–655Google Scholar
  63. Matsunaga T, Nakamura C, Burgess JG, Sode K (1992) Gene transfer in magnetic bacteria: transposon mutagenesis and cloning of genomic DNA fragments required for magnetosome synthesis. J Bacteriol 174:2748–2753PubMedGoogle Scholar
  64. Matsunaga T, Togo H, Kikuchi T, Tanaka T (2000) Production of luciferase-magnetic particle complex by recombinant Magnetospirillum sp AMB-1. Biotechnol Bioeng 70:704–709PubMedGoogle Scholar
  65. Matsunaga T, Ueki F, Obata K, Tajima H, Tanaka T, Takeyama H, Goda Y, Fujimoto S (2003) Fully automated immunoassay system of endocrine disrupting chemicals using monoclonal antibodies chemically conjugated to bacterial magnetic particles. Anal Chim Acta 475:75–83Google Scholar
  66. Matsunaga T, Okamura Y, Fukuda Y, Wahyudi AT, Murase Y, Takeyama H (2005) Complete genome sequence of the facultative anaerobic magnetotactic bacterium Magnetospirillum sp strain AMB-1. DNA Res 12:157–166PubMedGoogle Scholar
  67. Muxworthy AR, Williams W (2006) Critical single-domain/multidomain grain sizes in noninteracting and interacting elongated magnetite particles: Implications for magnetosomes. J Geophys Res 111:B12S12Google Scholar
  68. Muxworthy AR, Williams W (2009) Critical superparamagnetic/single-domain grain sizes in interacting magnetite particles: implications for magnetosome crystals. J R Soc Interf 6:1207–1212Google Scholar
  69. Nakamura C, Sakaguchi T, Kudo S, Burgess JG, Sode K, Matsunaga T (1993) Characterization of Iron Uptake in the Mangetic Bacterium Aquaspirillum sp. AMB-1. Appl Biochem Biotechnol 39(40):169–176Google Scholar
  70. Nakamura C, Kikuchi T, Burgess JG, Matsunaga T (1995) Iron-regulated expression and membrane localization of the maga protein in magnetospirillum sp strain AMB-1. J Biochem 118:23–27PubMedGoogle Scholar
  71. Nakazawa H, Arakaki A, Narita-Yamada S, Yashiro I, Jinno K, Aoki N, Tsuruyama A, Okamura Y, Tanikawa S, Fujita N, Takeyama H, Matsunaga T (2009) Whole genome sequence of Desulfovibrio magneticus strain RS-1 revealed common gene clusters in magnetotactic bacteria. Genome Res 19:1801–1808PubMedGoogle Scholar
  72. Nash CZ (2004) Magnetic microbes in Mono Lake. Mono Lake Newsletter Fall 2004:14Google Scholar
  73. Nies DH (2003) Efflux-mediated heavy metal resistance in prokaryotes. Fems Microbiol Rev 27:313–339PubMedGoogle Scholar
  74. Pallen MJ, Wren BW (1997) The HtrA family of serine proteases. Mol Microbiol 26:209–221PubMedGoogle Scholar
  75. Paoletti LC, Blakemore RP (1986) Hydroxamate production by Aquaspirillum magnetotacticum. J Bacteriol 167:73–76PubMedGoogle Scholar
  76. Philipse AP, Maas D (2002) Magnetic Colloids from Magnetotactic Bacteria: Chain Formation and Colloidal Stability. Langmuir 18:9977–9984Google Scholar
  77. Politi Y, Metzler RA, Abrecht M, Gilbert B, Wilt FH, Sagi I, Addadi L, Weiner S, Gilbert P (2008) Transformation mechanism of amorphous calcium carbonate into calcite in the sea urchin larval spicule. Proc Natl Acad Sci U S A 105:17362–17366PubMedGoogle Scholar
  78. Pósfai M, Moskowitz BM, Arato B, Schüler D, Flies C, Bazylinski DA, Frankel RB (2006) Properties of intracellular magnetite crystals produced by Desulfovibrio magneticus strain RS-1. Earth Planet Sci Lett 249:444–455Google Scholar
  79. Pradel N, Santini C-L, Bernadac A, Fukumori Y, Wu L-F (2006) Biogenesis of actin-like bacterial cytoskeletal filaments destined for positioning prokaryotic magnetic organelles. Proc Natl Acad Sci USA 103:17485–17489PubMedGoogle Scholar
  80. Richter M, Kube M, Bazylinski DA, Lombardot T, Glockner FO, Reinhardt R, Schüler D (2007) Comparative genome analysis of four magnetotactic bacteria reveals a complex set of group-specific genes implicated in magnetosome biomineralization and function. J Bacteriol 189:4899–4910PubMedGoogle Scholar
  81. Rodgers FG, Blakemore RP, Blakemore NA, Frankel RB, Bazylinski DA, Maratea D, Rodgers C (1990) Intercellular structure in a many-celled magnetotactic prokaryote. Arch Microbiol 154:18–22Google Scholar
  82. Rong CB, Huang YJ, Zhang WJ, Jiang W, Li Y, Li JL (2008) Ferrous iron transport protein B gene (feoB1) plays an accessory role in magnetosome formation in Magnetospirillum gryphiswaldense strain MSR-1. Res Microbiol 159:530–536PubMedGoogle Scholar
  83. Sakaguchi T, Arakaki A, Matsunaga T (2002) Desulfovibrio magneticus sp nov., a novel sulfate-reducing bacterium that produces intracellular single-domain-sized magnetite particles. IntJ Syst Evol Microbiol 52:215–221Google Scholar
  84. Sandy M, Butler A (2009) Microbial iron acquisition: marine and terrestrial siderophores. Chem Rev 109:4580–4595PubMedGoogle Scholar
  85. Scheffel A, Schüler D (2007) The acidic repetitive domain of the magnetospirillum gryphiswaldense mamj protein displays hypervariability but is not required for magnetosome chain assembly. J Bacteriol 189:6437–6446PubMedGoogle Scholar
  86. Scheffel A, Gruska M, Faivre D, Linaroudis A, Plitzko JM, Schüler D (2006) An acidic protein aligns magnetosomes along a filamentous structure in magnetotactic bacteria. Nature 440:110–115PubMedGoogle Scholar
  87. Scheffel A, Gärdes A, Grünberg K, Wanner G, Schüler D (2008) The major magnetosome proteins MamGFDC are not essential for magnetite biomineralization in Magnetospirillum gryphiswaldense, but regulate the size of magnetosome crystals. J Bacteriol 190:377–386PubMedGoogle Scholar
  88. Schleifer K-H, Schüler D, Spring S, Weizenegger M, Amann R, Ludwig W, Köhler M (1991) The genus Magnetospirillum gen. nov., description of Magnetospirillum gryphiswaldense sp. nov. and transfer of Aquaspirillum magnetotacticum to Magnetospirillum magnetotacticum comb. nov. Syst Appl Microbiol 14:379–385Google Scholar
  89. Schubbe S, Williams TJ, Xie G, Kiss HE, Brettin TS, Martinez D, Ross CA, Schuler D, Cox BL, Nealson KH, Bazylinski DA (2009) Complete genome sequence of the chemolithoautotrophic marine magnetotactic coccus strain MC-1. Appl Environ Microbiol 75:4835–4852PubMedGoogle Scholar
  90. Schübbe S, Williams TJ, Xie G, Kiss HE, Brettin TS, Martinez D, Ross CA, Schüler D, Cox BL, Nealson KH, Bazylinski DA (2009) Complete genome sequence of the chemolithoautotrophic marine magnetotactic coccus strain MC-1. Appl Environ Microbiol 75:4835–4852PubMedGoogle Scholar
  91. Schüler D (2008) Genetics and cell biology of magnetosome formation in magnetotactic bacteria. FEMS Microbiol Rev 32:654–672PubMedGoogle Scholar
  92. Schüler D, Baeuerlein E (1996) Iron-limited growth and kinetics of iron uptake in Magnetospirilum gryphiswaldense. Arch Microbiol 166:301–307PubMedGoogle Scholar
  93. Schüler D, Baeuerlein E (1998) Dynamics of iron uptake and Fe3O4 biomineralization during aerobic and microaerobic growth of Magnetospirillum gryphiswaldense. J Bacteriol 180:159–162PubMedGoogle Scholar
  94. Schultheiss D, Schüler D (2003) Development of a genetic system for Magnetospirillum gryphiswaldense. Archives Microbiol 179:89–94Google Scholar
  95. Sparks NHC, Courtaux L, Mann S, Board RG (1986) Magnetotactic bacteria are widely distributed in sediments in the U.K. FEMS Microbiol Let 37:305–308Google Scholar
  96. Spring S, Amann R, Ludwig W, Schleifer K-H, van Gemerden H, Petersen N (1993) Dominating role of an unusual magnetotactic bacterium in the microaerobic zone of a freshwater sediment. Appl Environ Microbiol 50:2397–2403Google Scholar
  97. Staniland S, Ward B, Harrison A, van der Laan G, Telling N (2007) Rapid magnetosome formation shown by real-time x-ray magnetic circular dichroism. Proc Natl Acad Sci USA 104:19524–19528PubMedGoogle Scholar
  98. Staniland S, Williams W, Telling N, Van Der Laan G, Harrison A, Ward B (2008) Controlled cobalt doping of magnetosomes in vivo. Nat Nano 3:158–162Google Scholar
  99. Sun J-B, Duan J-H, Dai S-L, Ren J, Zhang Y-D, Tian J-S, Li Y (2007) In vitro and in vivo antitumor effects of doxorubicin loaded with bacterial magnetosomes (DBMs) on H22 cells: The magnetic bio-nanoparticles as drug carriers. Cancer Lett 258:109–117PubMedGoogle Scholar
  100. Sun JB, Duan JH, Dai SL, Ren J, Guo L, Jiang W, Li Y (2008) Preparation and anti-tumor efficiency evaluation of doxorubicin-loaded bacterial magnetosomes: magnetic nanoparticles as drug carriers isolated from magnetospirillum gryphiswaldense. Biotechnol Bioeng 101:1313–1320PubMedGoogle Scholar
  101. Suzuki T, Okamura Y, Calugay RJ, Takeyama H, Matsunaga T (2006) Global gene expression analysis of iron-inducible genes in Magnetospirillum magneticum AMB-1. J Bacteriol 188:2275–2279PubMedGoogle Scholar
  102. Suzuki T, Okamura Y, Arakaki A, Takeyama H, Matsunaga T (2007) Cytoplasmic ATPase involved in ferrous ion uptake from magnetotactic bacterium Magnetospirillum magneticum AMB-1. FEBS Let 581:3443–3448Google Scholar
  103. Tanaka T, Matsunaga T (2000) Fully automated chemiluminescence immunoassay of insulin using antibody-protein A-bacterial magnetic particle complexes. Anal Chem 72:3518–3522PubMedGoogle Scholar
  104. Tanaka T, Maruyama K, Yoda K, Nemoto E, Udagawa Y, Nakayama H, Takeyama H, Matsunaga T (2003) Development and evaluation of an automated workstation for single nucleotide polymorphism discrimination using bacterial magnetic particles. Biosens Bioelectron 19:325–330PubMedGoogle Scholar
  105. Taoka A, Asada R, Sasaki H, Anzawa K, Wu L-F, Fukumori Y (2006) Spatial localizations of Mam22 and Mam12 in the magnetosomes of magnetospirillum magnetotacticum. J Bacteriol 188:3805–3812PubMedGoogle Scholar
  106. Taoka A, Asada R, Wu LF, Fukumori Y (2007) Polymerization of the actin-like protein MamK, which is associated with magnetosomes. J Bacteriol 189:8737–8740PubMedGoogle Scholar
  107. Taoka A, Umeyama C, Fukumori Y (2009) Identification of iron transporters expressed in the magnetotactic bacterium Magnetospirillum magnetotacticum. Curr Microbiol 58:177–181PubMedGoogle Scholar
  108. Taylor AP, Barry JC (2004) Magnetosomal matrix: ultrafine structure may template biomineralization of magnetosomes. J Microsc 213:180–197PubMedGoogle Scholar
  109. Ullrich S, Kube M, Schübbe S, Reinhardt R, Schüler D (2005) A hypervariable 130-kilobase genomic region of Magnetospirillum gryphiswaldense comprises a magnetosome island which undergoes frequent rearrangements during stationary growth. J Bacteriol 187:7176–7184PubMedGoogle Scholar
  110. Vali H, Forster O, Amarantidid G, Petersen H (1987) Magnetotactic bacteria and their magnetofossils in sediments. Earth Planet Sci Lett 86:389–400Google Scholar
  111. Vereda F, de Vicente J, Hidalgo-Alvarez R (2009) Physical properties of elongated magnetic particles: magnetization and friction coefficient anisotropies. ChemPhysChem 10:1165–1179PubMedGoogle Scholar
  112. Winklhofer M (2007) Magnetite-based magnetoreception in higher organisms. In: Schüler D (ed) Magnetoreception and magnetosomes in bacteria. Springer, HeidelbergGoogle Scholar
  113. Winklhofer M, Petersen N (2007) Paleomagnetism and magnetic bacteria. In: Schüler D (ed) Magnetoreception and magnetosomes in bacteria. Springer, HeidelbergGoogle Scholar
  114. Winklhofer M, Holtkamp-Rötzler E, Hanzlik M, Fleissner G, Petersen N (2001) Clusters of superparamagnetic magnetite particles in the upper-beak skin of homing pigeons: evidence of a magnetoreceptor? Eur J Mineral 13:659–669Google Scholar
  115. Xiong Y, Ye J, Gu XY, Chen QW (2007) Synthesis and assembly of magnetite nanocubes into flux-closure rings. J Phys Chem C 111:6998–7003Google Scholar
  116. Yijun H, Weijia Z, Wei J, Chengbo R, Ying L (2007) Disruption of a fur-like gene inhibits magnetosome formation in magnetospirillum gryphiswaldense MSR-1. Biochem-Moscow 72:1247–1253Google Scholar
  117. Yoshino T, Matsunaga T (2006) Efficient and Stable Display of Functional Proteins on Bacterial Magnetic Particles Using Mms13 as a Novel Anchor Molecule. Appl Environ Microbiol 72:465–471PubMedGoogle Scholar
  118. Yoshino T, Takahashi M, Takeyama H, Okamura Y, Kato F, Matsunaga T (2004) Assembly of G protein-coupled receptors onto nanosized bacterial magnetic particles using Mms16 as an anchor molecule. Appl Environ Microbiol 70:2880–2885PubMedGoogle Scholar
  119. Yoza B, Arakaki A, Matsunaga T (2003) DNA extraction using bacterial magnetic particles modified with hyperbranched polyamidoamine dendrimer. J Biotechnol 101:219–228PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Department of BiomaterialsMax Planck Institute of Colloids and InterfacesPotsdamGermany
  2. 2.Department of BiomaterialsMax Planck Institute of Colloids and InterfacesPotsdamGermany

Personalised recommendations