Kernel Fisher Discriminant and Elliptic Shape Model for Automatic Measurement of Allergic Reactions

  • Heikki Huttunen
  • Jari-Pekka Ryynänen
  • Heikki Forsvik
  • Ville Voipio
  • Hisakazu Kikuchi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6688)


A semiautomatic segmentation method for images of allergic reactions in skin prick test is proposed. The method is based on elliptic model for the shape of the wheal, and it uses the kernel Fisher discriminant for grayscale projection and for measuring the separability of the object and the background areas. Experiments indicate that the method is robust and the results are close to those obtained manually.


Allergy Test Kernel Fisher Discriminant Elliptic Shape Model 


  1. 1.
    Brändle, N., Chen, H., Bischof, H., Lapp, H.: Robust parametric and semi-parametric spot fitting for spot array images. In: 8th Intl. Conf. on Intell. Syst. for Mol. Biol., ISMB 2000, pp. 1–12 (2000)Google Scholar
  2. 2.
    Celebi, M., Iyatomi, H., Schaefer, G.: Contrast enhancement in dermoscopy images by maximizing a histogram bimodality measure. In: 16th IEEE Int. Conf. on Image Proc. (ICIP), pp. 2601–2604 (2009)Google Scholar
  3. 3.
    Fisher, R.: The use of multiple measurements in taxonomic problems. Annals of Eugenics 7, 179–188 (1936)CrossRefGoogle Scholar
  4. 4.
    Gomez, D.D., Clemmensen, L.H., Ersbøll, B.K., Carstensen, J.M.: Precise acquisition and unsupervised segmentation of multi-spectral images. Comp. Vis. and Image Understanding 106(2-3), 183–193 (2007)CrossRefGoogle Scholar
  5. 5.
    Gomez, D., Butakoff, C., Ersboll, B., Stoecker, W.: Independent histogram pursuit for segmentation of skin lesions. IEEE Trans. Biomed. Eng. 55(1), 157–161 (2008)CrossRefGoogle Scholar
  6. 6.
    Harchaoui, Z., Bach, F., Eric, M.: Testing for homogeneity with kernel fisher discriminant analysis. In: Adv. in Neural Inf. Proc. Syst. 20, pp. 609–616. MIT Press, Cambridge (2008)Google Scholar
  7. 7.
    Mika, S., Ratsch, G., Weston, J., Scholkopf, B., Mullers, K.: Fisher discriminant analysis with kernels. In: Proc. IEEE Neural Netw. for Signal Process. IX, pp. 41–48 (1999)Google Scholar
  8. 8.
    Nischik, M., Forster, C.: Analysis of skin erythema using true-color images. IEEE Trans. Med. Imag. 16(6), 711–716 (1997)CrossRefGoogle Scholar
  9. 9.
    Roullot, E., Autegarden, J.-E., Devriendt, P., Leynadier, F.: Segmentation of erythema from skin photographs for assisted diagnosis in allergology. In: Singh, S., Singh, M., Apte, C., Perner, P. (eds.) ICAPR 2005. LNCS, vol. 3687, pp. 754–763. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  10. 10.
    Santos, R., Mlynek, A., Lima, H., Martus, P., Maurer, M.: Beyond flat weals: validation of a three-dimensional imaging technology that will improve skin allergy research. Clin. Exp. Dermatol. 33(6), 772–775 (2008)CrossRefGoogle Scholar
  11. 11.
    Schölkopf, B., Smola, A.J.: Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond, 1st edn. MIT Press, Cambridge (2001)Google Scholar
  12. 12.
    Silverman, B.: Density Estimation for Statistics and Data Analysis. Chapman-Hall, Boca Raton (1986)CrossRefzbMATHGoogle Scholar
  13. 13.
    Wöhrl, S., Vigl, K., Binder, M., Stingl, G., Prinz, M.: Automated measurement of skin prick tests: an advance towards exact calculation of wheal size. Experimental Dermatology 15(2), 119–124 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Heikki Huttunen
    • 1
  • Jari-Pekka Ryynänen
    • 1
  • Heikki Forsvik
    • 1
  • Ville Voipio
    • 1
  • Hisakazu Kikuchi
    • 2
  1. 1.Department of Signal ProcessingTampere University of TechnologyFinland
  2. 2.Graduate School of Science and TechnologyNiigata UniversityJapan

Personalised recommendations