Plants commonly known as foxgloves belong to the genus Digitalis, which is a member of the Plantaginaceae. Digitalis species are the most important source of cardiac glycosides or cardenolides. Due to their effectivity in the treatment of heart insufficiency, cardenolides from Digitalis have been used extensively worldwide. This review updates the taxonomy, evolution, phylogeny, phytochemistry, and breeding of the genus. Given the high therapeutic and commercial value of cardenolides, the review highlights the biotechnological approaches impacting on Digitalis breeding programs. Strategies include (1) the use of molecular markers to assess biodiversity in natural populations of the species; (2) in vitro approaches for conservation, multiplication, and production of cardenolides; and (3) metabolic engineering of the cardenolide pathway. Challenges for near future should be focused on marker-assisted breeding programs of Digitalis species. The use of genetic maps based on molecular markers linked to genes of interest will facilitate the selection for simple and complex traits, thus accelerating their incorporation into breeding material.


Somatic Embryo Somatic Embryogenesis Cardiac Glycoside Mevalonic Acid Steroidal Saponin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Albach DC, Chase MW (2004) Incongruence in Veronicaceae (Plantaginaceae): evidence from two plastid and a nuclear ribosomal DNA region. Mol Phylogenet Evol 32:183–197PubMedGoogle Scholar
  2. Albach DC, Meudt HM, Oxelman B (2005) Piercing together the “new” Plantaginaceae. Am J Bot 92:297–315PubMedGoogle Scholar
  3. Ardelean M, Costea AM, Cordea M (2006) Breeding foxglove (Digitalis sp.) for ornamental and/or medical purposes. Symposium on prospects for the 3rd millennium agriculture. Bull Univ Agric Sci Vet Med 63:22–31Google Scholar
  4. Arnalte E, Pérez-Bermúdez P, Cornejo MJ, Segura J (1991) Influence of microspore development on pollen protoplast isolation in Digitalis obscura. J Plant Physiol 138:622–624Google Scholar
  5. Arrebola ML, Verpoorte R (2003) Micropropagation of Isoplexis isabelliana (Webb & Berth.) Masf., a threatened medicinal plant. J Herbs Spices Med Plants 10:89–94Google Scholar
  6. Arrebola ML, Socorro O, Verpoorte R (1997) Micropropagation of Isoplexis canariensis (L.) G. Don. Plant Cell Tiss Org Cult 49:117–119Google Scholar
  7. Arrillaga I, Brisa MC, Segura J (1986) Somatic embryogenesis and plant regeneration from hypocotyl cultures of Digitalis obscura L. J Plant Physiol 124:425–430Google Scholar
  8. Arrillaga I, Brisa MC, Segura J (1987) Somatic embryogenesis from hypocotyl callus cultures of Digitalis obscura L. Plant Cell Rep 6:223–226Google Scholar
  9. Bajaj YPS (1990) In vitro production of haploids and their use in cell genetics and plant breeding. In: Bajaj YPS (ed) Biotechnology in agriculture and forestry, vol 12, Haploids in crop improvement I. Springer, Berlin, Germany, pp 3–44Google Scholar
  10. Balbaa SI, Halal SH, Haggag MY (1971) Effect of irrigation and nitrogenous fertilizers on growth and glycosidal content of Digitalis lanata. Planta Med 20:54–59PubMedGoogle Scholar
  11. Bauer P, Kopp B, Franz G (1984) Planta Med 50:12–14PubMedGoogle Scholar
  12. Bentham G (1835) Botanical Register, sub. t. 1770, London, UKGoogle Scholar
  13. Bocquet G, Zerbst KJ (1974) Beiträge zur Kenntnis der Gattung Digitalis L. II. Digitalis laevigata Waldst. et Kit. D. graeca IVANINA und D. graeca var. megalantha Bocquet et Zerbst var. nova. Candollea 29:251–266Google Scholar
  14. Bonfill M, Palazón J, Cusidó RM (1996) Effect of auxin and phenobarbital on the ultrastructure and digitoxin content in Digitalis purpurea tissue culture. Can J Bot 74:378–382Google Scholar
  15. Boronnikova SV, Kokaeva ZG, Gostimsky SA, Dribnokhodova OP, Tikhomirova NN (2007) Analysis of DNA polymorphism in a relict Uralian species, large-flowered foxglove (Digitalis grandiflora Mill.), using RAPD and ISSR markers. Russ J Genet 43:530–535Google Scholar
  16. Bown D (1995) (ed) Encyclopaedia of herbs and their uses. Dorling Kindersley, London, UKGoogle Scholar
  17. Bräuchler C, Meimberg H, Heubl G (2004) Molecular phylogeny of the genera Digitalis L. and Isoplexis (Lindley) Loudon (Veronicaceae) based on ITS and trnL-F sequences. Plant Syst Evol 248:111–128Google Scholar
  18. Brisa MC, Segura J (1987) Isolation, culture and plant regeneration from mesophyll protoplasts of Digitalis obscura. Physiol Plant 69:680–686Google Scholar
  19. Brugidou C, Jacques M (1987) Le développement de Digitalis lanata Ehrh. en conditions contrôlées et naturelles: établissement de critères de sélection. Agronomie 7:685–694Google Scholar
  20. Brugidou C, Jacques M, Cosson L, Jarreau FX, Ogerau T (1988) Growth and digoxin content in Digitalis lanata in controlled conditions and natural environment. Planta Med 54:262–265PubMedGoogle Scholar
  21. Bühl W (1984) Enzyme in Blättern von Digitalis-Arten (unter besonderer Berücksichtigung von herzglykosidspaltender Glucosidase und Esterase). Diss, Marburg, GermanyGoogle Scholar
  22. Burnett AR, Thomson RH (1968) Anthraquinones in two Digitalis species. Phytochemistry 7:1423Google Scholar
  23. Butler LH, Hay FR, Ellis RH, Smith RD (2009a) Post-abscission, pre-dispersal seeds of Digitalis purpurea remain in a developmental state that is not terminated by desiccation ex planta. Ann Bot 103:785–794PubMedGoogle Scholar
  24. Butler LH, Hay FR, Ellis RH, Smith RD, Murray TB (2009b) Priming and re-drying improve the survival of mature seeds of Digitalis purpurea during storage. Ann Bot 103:1261–1270PubMedGoogle Scholar
  25. Cacho M, Morán M, Herrera MT, Fernández-Tárrago J, Corchete P (1991) Morphogenesis in leaf, hypocotyl and roots explants of Digitalis thapsi L cultured in vitro. Plant Cell Tiss Org Cult 25:117–123Google Scholar
  26. Calcandi V, Zampfirescu I, Ciropol-Calcandi I (1961) Cardioactive glycosides of several Digitalis hybrids. Pharmazie 16:475–477PubMedGoogle Scholar
  27. Calixto JB (2000) Efficacy, safety, quality control, marketing and regulatory guidelines for herbal medicines (phytotherapeutic agents). Braz J Med Biol Res 33:179–189PubMedGoogle Scholar
  28. Canter PH, Thomas H, Ernst E (2005) Bringing medicinal plant species into cultivation: opportunities and challenges for biotechnology. Trends Biotechnol 23:180–185PubMedGoogle Scholar
  29. Carvalho JA, Culham A (1997) Phylogenetic and biogeographic relationships of the genera Isoplexis (Lindl.) Benth. and Digitalis L. (Scrophulariaceae-tribe Digitaleae): nuclear DNA evidence. Am J Bot 84:180Google Scholar
  30. Carvalho JA, Culham A (1998) Conservation status and preliminary results on the phylogenetics of Isoplexis (Lindl.) Benth. (Scrophulariaceae). Bol Mus Mun Funchal Sup 5:109–127Google Scholar
  31. Castro Braga F, Kreis W, Almeida Recio R, Braga de Oliveira A (1997) Variation of cardenolides with growth in a Digitalis lanata brazilian cultivar. Phytochemistry 45:473–476Google Scholar
  32. Chevallier A (1996) The encyclopedia of medicinal plants. Dorling Kindersley, London, UKGoogle Scholar
  33. Christmann J, Kreis W, Reinhardt E (1993) Uptake, transport and storage of cardenolides in foxglove. Cardenolide sinks and occurrence of cardenolides in the sieve tubes of Digitalis lanata. Bot Acta 106:419–427Google Scholar
  34. Contandriopoulos J, Cardona MA (1984) Caractère original de la flore endémique des Baléares. Bot Helv 94:101–131Google Scholar
  35. Corduan G, Spix C (1975) Haploid callus and regeneration of plants from anthers of Digitalispurpurea L. Planta 124:1–11Google Scholar
  36. Çördük N, Aki C (2010) Direct shoot organogenesis of Digitalis trojana Ivan., an endemic medicinal herb of Turkey. Afr J Biotechnol 9:1587–1591Google Scholar
  37. Delgado Benitez J, Velazquez JM, Breton Funes L, Gonzalez Gonzalez A (1969) Aglucons of Digitalis canariensis. Ann Quim 65:817–824Google Scholar
  38. Deluca ME, Seldes AM, Gros EG (1989) Biosynthesis of digitoxin in Digitalis purpurea. Phytochemistry 28:109–111Google Scholar
  39. Diettrich B (1986) Kardenolidbildung und Morphogenese in Gewebekulturen von Digitalislanata. Habilitationsschrift, Halle, GermanyGoogle Scholar
  40. Diettrich B, Neuman D, Luckner M (1980) Protoplast-derived clones from cell cultures of Digitalis purpurea. Planta Med 38:375–382Google Scholar
  41. Diettrich B, Neumann D, Luckner M (1982) Clonation of protoplast-derived cells of Digitalis lanata suspension cultures. Biochem Physiol Pflanzen 177:176–183Google Scholar
  42. Diettrich B, Steup C, Neumann D, Scheibner H, Reinbothe C, Luckner M (1986a) Morphogenetic capacity of cell strains derived from filament, leaf and root explants of Digitalis lanata. J Plant Physiol 124:441–453Google Scholar
  43. Diettrich B, Haack U, Luckner M (1986b) Cryopreservation of Digitalis lanata cells grown in vitro. Pre-cultivation and recultivation. J Plant Physiol 126:63–73Google Scholar
  44. Diettrich B, Wolf T, Borman A, Popov AS, Butenko RG, Luckner M (1987) Cryopreservation of Digitalis lanata shoot tips. Planta Med 53:359–363PubMedGoogle Scholar
  45. Diettrich B, Mertinat H, Luckner M (1990) Formation of Digitalis lanata clone lines by shoot tip culture. Planta Med 56:53–58PubMedGoogle Scholar
  46. Diettrich B, Schneider V, Luckner M (1991) High variation in cardenolide content of plants regenerated from protoplasts of the embryogenic cell strain VII of Digitalis lanata. J Plant Physiol 139:199–204Google Scholar
  47. Diettrich B, Ernst S, Luckner M (2000) Haploid plants regenerated from androgenic cell cultures of Digitalis lanata. Plant Med 66:237–240Google Scholar
  48. Don Palmer CE, Keller WA (2005) Overview of haploidy. In: Nagata T, Lörz H, Widholm JM (eds) Biotechnology in agriculture and forestry, vol 56, Haploids in crop improvement II. Springer, Berlin, Germany, pp 3–9Google Scholar
  49. Duke JA (2002) Handbook of medicinal herbs, 2nd edn. CRC, Boca Raton, FL, USAGoogle Scholar
  50. Egerer-Sieber C, Herl V, Müller-Uri F, Kreis W, Muller YA (2006) Crystallization and preliminary crystallographic analysis of selenomethionine-labelled progesterone 5β-reductase from Digitalis lanata Ehrh. Acta Crystallogr F62:186–188Google Scholar
  51. Ernst S, Scheibner K, Diettrich B, Luckner M (1990) Androgenetic cell cultures and plants from anthers of Digitalis lanata. J Plant Physiol 137:129–134Google Scholar
  52. Evans FL (1973) Alkanes of Digitalis purpurea leaves. Planta Med 24:101–106PubMedGoogle Scholar
  53. Faust T, Theurer C, Eger K, Kreis W (1994) Synthesis of Uridine 5′-(D-fucopyranosyl diphosphate) and (Digitoxigenin-3β-yl)-β-D-fucopyranoside and enzymatic β-D-fucosylation of cardenolide aglycones in Digitalis lanata. Bioorg Chem 22:140–149Google Scholar
  54. Ferrie AMR (2007) Doubled haploid production in nutraceutical species: a review. Euphytica 158:347–357Google Scholar
  55. Finsterbusch A, Lindemann P, Grimm R, Eckerskorn C, Luckner M (1999) Δ5-3β-hydroxysteroid dehydrogenase from Digitalis lanata Ehrh. A multifunctional enzyme in steroid metabolism? Planta 209:479–486Google Scholar
  56. Focke WO (1881) Die Pflanzen-mischlinge, ein Beitrag zur Biologie der Gewächse. Borntraeger, Berlin, GermanyGoogle Scholar
  57. Fonin VS, Khorlin AY (2003) Preparation of biologically transformed raw material of woolly foxglove (Digitalis lanata Ehrh.) and isolation of digoxin therefrom. Appl Biochem Microbiol 39:519–523Google Scholar
  58. Foster S, Duke JA (1990) A field guide to medicinal plants. eastern and central N. America. Houghton Mifflin, Boston, USAGoogle Scholar
  59. Framm JJ, Peterson A, Thoeringer C, Pangert A, Hornung E, Feussner I, Luckner M, Lindemann P (2000) Cloning and functional expression in Escherichia coli of a cDNA encoding cardenolide 16′-O-glucohydrolase from Digitalis lanata Ehrh. Plant Cell Physiol 41:1293–1298PubMedGoogle Scholar
  60. Franz G, Hassid WZ (1967) Biosynthesis of digitoxose and glucose in the purpurea glylosides of Digitalis purpurea. Phytochemistry 6:841–844Google Scholar
  61. Franz G, Meier H (1969) Uridine diphosphate diqitoxose from the leaves of Digitalis purpurea L. Biochim Biophys Acta 184:658–659PubMedGoogle Scholar
  62. Freire R, González AG, Suárez E (1970) Sceptrumgenin and isoplexigenin A, B, C and D from Isoplexis sceptrum. Tetrahedron 26:3233–3244Google Scholar
  63. Freitag H, Spengel S, Linde H, Meyer K (1967) Die Glykoside der Blätter von Isoplexis isabelliana (WEBB) MASF. Helv Chim Acta 50:1336–1366PubMedGoogle Scholar
  64. Furuya T, Hirotani M, Shinohara T (1970) Biotransformation of digitoxin by suspension callus culture of Digitalis purpurea. Chem Pharm Bull 18:1080–1081PubMedGoogle Scholar
  65. Galmés J, Medrano H, Flexas J (2007) Photosynthesis and photoinhibition in response to drought in a pubescent (var. minor) and a glabrous (var. palaui) variety of Digitalis minor. Environ Exp Bot 60:105–111Google Scholar
  66. Gärtner DE, Seitz HU (1993) Enzyme activities in cardenolide accumulating, mixotrophic shoot cultures of Digitalis purpurea L. J Plant Physiol 141:269–275Google Scholar
  67. Gärtner DE, Wendroth S, Seitz HU (1990) A stereospecific enzyme of the putative biosynthetic pathway of cardenolides. Characterization of a progesterone 5β-reductase from leaves of Digitalis purpurae L. FEBS Lett 271:239–242PubMedGoogle Scholar
  68. Gärtner DE, Keilholz W, Seitz HU (1994) Purification, characterization and partial peptide microsequencing of progesterone 5β-reductase from shoot cultures of Digitalis purpurea. Eur J Biochem 225:1125–1132PubMedGoogle Scholar
  69. Garve R, Luckner M, Vogel E, Tewes A, Nover L (1980) Growth, morphogenesis und cardenolide formation in long-term cultures of Digitalis lanata. Planta Med 40:92–103Google Scholar
  70. Gavidia I, Pérez-Bermudez P (1997) Cardenolides of Digitalis obscura: the effect of phosphate and manganese on growth and productivity of shoot-tip cultures. Phytochemistry 45:81–85Google Scholar
  71. Gavidia I, Pérez-Bermudez P (1999) Variants of Digitalis obscura from irradiated shoot tips. Euphytica 110:153–159Google Scholar
  72. Gavidia I, Segura J, Perez-Bermudez P (1993) Effects of gibberellic acid on morphogenesis and cardenolide accumulation in juvenile and adult Digitalis obscura cultures. J Plant Physiol 142:373–376Google Scholar
  73. Gavidia I, Del Castillo-Agudo L, Pérez-Bermúdez P (1996) Selection and long term cultures of high-yielding Digitalis obscura plants: RAPD markers for analysis of genetic stability. Plant Sci 121:197–205Google Scholar
  74. Gavidia I, Seitz H, Pérez-Bermúdez P, Vogler B (2002) LC-NMR applied to the characterisation of cardiac glycosides from three micropropagated Isoplexis species. Phytochem Anal 13:266–271PubMedGoogle Scholar
  75. Gavidia I, Tarrio R, Rodríguez-Trelles F, Pérez-Bermudez P, Seitz HU (2007) Plant progesterone 5 beta-reductase is not homologous to the animal enzyme. Molecular evolutionary characterization of P5βR from Digitalis purpurea. Phytochemistry 68:853–864PubMedGoogle Scholar
  76. Gonzales A, Breton J, Navarro E, Boada J, Rodriguez R (1985) Phytochemical study of Isoplexis chalcantha. Planta Med 51:915–927Google Scholar
  77. Gregory H, Leete E (1969) Progesterone: its possible role in the biosynthesis of cardenolides in Digitalis lanata. Chemistry and Industry, London, UKGoogle Scholar
  78. Greidziak N, Diettrich B, Luckner M (1990) Bath cultures of somatic embryos of Digitalis lanata in gaslift fermenters. Development and cardenolide accumulation. Planta Med 56:175–178PubMedGoogle Scholar
  79. Grieve M (1984) A modern herbal. Penguin Books, London, UKGoogle Scholar
  80. Grigat R (2005) Die Progesteron-5α-Reduktase. Dissertation, University of Erlangen, Nürnberg, GermanyGoogle Scholar
  81. Grindeland JM (2008) Inbreeding depression and outbreeding depression in Digitalis purpurea: optimal outcrossing distance in a tetraploid. J Evol Biol 21:716–726PubMedGoogle Scholar
  82. Gros EG, Leete E (1965) Biosynthesis of plant steroids, II. The distribution of activity in digitoxigenin derived from mevalonic acid-2-C14. J Am Chem Soc 87:3479–3484PubMedGoogle Scholar
  83. Gutierrez FJ, Ramos B, Jose Lucas JA, Probanza A, Barrientos ML (2003) Systemic induction of the biosynthesis of terpenic compounds in Digitalis lanata. J Plant Physiol 160:105–113Google Scholar
  84. Hagimori M, Matsumoto T, Obi Y (1982a) Studies on the production of Digitalis cardenolides by plant-tissue culture 2. Effect of light and plant-growth substances on digitoxin formation by undifferentiated cells and shoot-forming cultures of Digitalis purpurea L. grown in liquid media. Plant Physiol 69:653–656PubMedGoogle Scholar
  85. Hagimori M, Matsumoto T, Obi Y (1982b) Studies on the production of Digitalis cardenolides by plant-tissue culture 3. Effects of nutrients on digitoxin formation by shoot forming cultures of Digitalis purpurea L. grown in liquid media. Plant Cell Physiol 23:1205–1211Google Scholar
  86. Hagimori M, Matsumoto T, Mikami Y (1984a) Photoautotrophic culture of undifferentiated cells and shoot-forming cultures of Digitalis purpurea L. Plant Cell Physiol 25:1099–1102Google Scholar
  87. Hagimori M, Matsumoto T, Mikami Y (1984b) Jar fermenter culture of shoot-forming cultures of Digitalis purpurea L using a revised medium. Agric Biol Chem 48:965–970Google Scholar
  88. Hamrick JL, Godt MJW (1990) Allozyme diversity in plant species. In: Brown AHD, Clegg MT, Kahler AL, Weir BS (eds) Plant population genetics, breeding and genetic resources. Sinauer, Sunderland, MA, USA, pp 43–63Google Scholar
  89. Hamrick JL, Godt MJW (1996) Effects of life history traits on genetic diversity in plant species. Philos Trans R Soc Lond Ser B 351:1291–1298Google Scholar
  90. Hartmann T (1996) Diversity and variability of plant secondary metabolism: a mechanistic view. Entomol Exp Appl 80:177–188Google Scholar
  91. Haussmann W, Kreis W, Stuhlemmer U (1997) Effects of various pregnanes and two 23-nor-5-cholenic acids on cardenolide accumulation in cell and organ cultures of Digitalis lanata. Planta Med 63:446–453PubMedGoogle Scholar
  92. Hayward MD, Sackville-Hamilton NR (1997) Genetic diversity-population structure and conservation. In: Callow JA, Ford-Lloyd BV, Newbury HJ (eds) Biotechnology and plant genetic resources. CABI, New York, USA, pp 49–76Google Scholar
  93. Heeger EF (1956) Handbuch des Arznei- und Gewürzpflanzenbaues, Drogengewinnung. Deutscher Bauernverlag, Berlin, GermanyGoogle Scholar
  94. Helmbold H, Voelter W, Reinhard E (1978) Sterols in cell cultures of Digitalis lanata. Planta Med 33:185–187Google Scholar
  95. Hensel A, Schmidgall J, Kreis W (1997) Extracellular polysaccharides produced by suspension-cultured cells from Digitalis lanata. Planta Med 63:441–445PubMedGoogle Scholar
  96. Hensel A, Schmidgall J, Kreis W (1998) The plant cell wall – a potential source for pharmacologically active polysaccharides. Pharm Acta Helv 73:37–43Google Scholar
  97. Herl V, Fischer G, Botsch R, Müller-Uri F, Kreis W (2006a) Molecular cloning and expression of progesterone 5 beta-reductase (5 beta-POR) from Isoplexis canariensis. Planta Med 72:1163–1165PubMedGoogle Scholar
  98. Herl V, Fisher G, Müller-Uri F, Kreis W (2006b) Molecular cloning and heterologous expression of progesterone 5β-reductase from Digitalis lanata Ehrh. Phytochemistry 67:225–231PubMedGoogle Scholar
  99. Herl V, Frankenstein J, Meitinger N, Müller-Uri F, Kreis W (2007) A (5)-3 beta-hydroxysteroid dehydrogenase (3βHSD) from Digitalis lanata. Heterologous expression and characterisation of the recombinant enzyme. Planta Med 73:704–710PubMedGoogle Scholar
  100. Herl V, Albach DC, Müller-Uri F, Bräuchler C, Heubl G, Kreis W (2008) Using progesterone 5β-reductase, a gene encoding a key enzyme in the cardenolide biosynthesis, to infer the phylogeny of the genus Digitalis. Plant Syst Evol 271:65–78Google Scholar
  101. Herrera MT, Cacho M, Corchete MP, Fernández-Tárrago J (1990) One step shoot tip multiplication and rooting of Digitalis thapsi L. Plant Cell Tiss Org Cult 22:179–182Google Scholar
  102. Heywood JS (1991) Spatial analysis of genetic variation in plant populations. Annu Rev Ecol Syst 22:335–355Google Scholar
  103. Hill JB (1929) Matrocliny in flower size in reciprocal F1 hybrids between Digitalis lutea and Digitalis purpurea. Bot Gaz 87:548–555Google Scholar
  104. Hill AF (1952) Economic botany. Maple, San José, CA, USAGoogle Scholar
  105. Hinz PA (1987a) Etude biosystematique de l’agregat Digitalis purpurea L (Scrophulariaceae) en Mediterranee occidentale. VIII. Digitalis minor L. endemique des Balears. Candollea 44:147–174Google Scholar
  106. Hinz PA (1987b) Etude biosystématique de l’agrégat Digitalis purpurea en Méditerranée occidentale. III. Types nomenclturaux. Candollea 42:167–183Google Scholar
  107. Hinz PA (1989a) Etude biosystématique de l’agrégat Digitalis purpurea en Méditerranée occidentale. IX. Digitalis mariana Boiss. Candollea 44:147–174Google Scholar
  108. Hinz PA (1989b) Etude biosystématique de l’agrégat Digitalis purpurea en Méditerranée occidentale. X. Digitalis thapsi L. Candollea 44:681–714Google Scholar
  109. Hinz PA (1990a) Etude biosystématique de l’agrégat Digitalis purpurea en Méditerranée occidentale. XI. Digitalis purpurea L. Candollea 45:125–180Google Scholar
  110. Hinz PA (1990b) Etude biosystématiwue de l’agrégat Digitalis purpurea en Méditerranée occidentale. XII. Synthese. Candollea 45:181–199Google Scholar
  111. Hinz PA, Bocquet G, Mascherpa JM (1986) Etude biosystématique de l’agrégat Digitalis purpurea L. (Scrophulariaceae) en Méditerranée occidentale. I. Remarques preliminaires. Candollea 41:329–337Google Scholar
  112. Hirotani M, Furuya T (1975) Metabolism of 5β-pregnane-3,20-dione and 3β-hydroxy-5β-pregnane-20-one by Digitalis suspension cultures. Phytochemistry 14:2601–2606Google Scholar
  113. Hornberger M, Böttigheimer U, Hillier-Kaiser A, Kreis W (2000) Purification and characterisation of the cardenolide-specific β-glucohydrolase CGH II from Digitalis lanata leaves. Plant Physiol Biochem 38:929–936Google Scholar
  114. Ikeda Y, Fujii Y (2003) Quantitative determination of lanatosides in the hybrid Digitalis ambigua × Digitalis lanata leaves by HPLC. J Liq Chrom Relat Technol 26:2013–2021Google Scholar
  115. Imre S, Tulus R, Sengün I (1971) Zwei neue Anthrachinon-Verbindungen aus Digitalis ferruginea. Tetrahedron Lett 48:4681–4683Google Scholar
  116. Imre S, Sar S, Thomson RH (1976) Anthraquinones in Digitalis species. Phytochemistry 15:317–320Google Scholar
  117. Imre Z, Yurdun T, Cöne H (1981) Die quantitative Glykkosidzusammensetzung der Blätter von türkischen Digitalis-Arten. J Fac Pharm Istanbul 17:215–228Google Scholar
  118. Ivanina LI (1955) Die Gattung Digitalis L. (Fingerhut) und ihre praktische Verwendung. In: Schischkina BK (ed) Flora und Systematik der höheren Pflanzen, Acta Inst Bot Acad Sci URSS, Ser 1, Bd 11. Akademie der Wissenschaften der UDSSR, Moskau, pp 71–88Google Scholar
  119. Jacobsohn GM, Frey MJ (1968) Sterol content and metabolism during early growth of Digitalis purpurea. Arch Biochem Biophys 127:655–660PubMedGoogle Scholar
  120. Jacobsohn MK, Jacobsohn GM (1976) Annual variation in the sterol content of Digitalis purpurea L. seedlings. Plant Physiol 58:541–543PubMedGoogle Scholar
  121. Janknecht R, de Martynoff G, Lou J, Hipskind RA, Nordheim A, Stunnenberg HG (1991) Rapid and efficient purification of native histidine-tagged protein expressed by recombinant vaccinia virus. Proc Natl Acad Sci USA 88:8972–8976PubMedGoogle Scholar
  122. Jones WN (1912) Species hybrids in Digitalis. J Genet 2:71–88Google Scholar
  123. Joshi K, Chavan P, Warude D, Patwardhan B (2004) Molecular markers in herbal drug technology. Curr Sci 87:159–165Google Scholar
  124. Kaiser F (1966) Chromatographische Analyse der herzwirksamen Glykoside von Digitalis-Arten. Arch Pharm (Weinheim) 299:263–274Google Scholar
  125. Kandzia R, Grimm R, Eckerskorn C, Lindemann P, Luckner M (1998) Purification and characterization of lanatoside 15′-O-acetylesterase from Digitalis lanata Ehrh. Planta 204:383–389PubMedGoogle Scholar
  126. Kelly LJ, Culham A (2008) Phylogenetic utility of MORE AXILLARY GROWTH4 (MAX4)-like genes: a case study in Digitalis/Isoplexis (Plantaginaceae). Plant Syst Evol 273:133–149Google Scholar
  127. Kennedy AJ (1978) Cytology and digoxin production in hybrids between Digitalis lanata and D. grandiflora. Euphytica 27:267–272Google Scholar
  128. Koelreuter JG (1777) Digitalis hybridae. Acta Acad Imp Sci Petrop, pp 215–233Google Scholar
  129. Kondo KH, Kai NH, Setoguchi Y, Eggertsen G, Sjöblom P, Setoguchi T, Okuda KI, Björkhem I (1994) Cloning and expression of cDNA of human Δ4-3-oxosteroid 5-β reductase and substrate specificity of the expressed enzyme. Eur J Biochem 219:357–363PubMedGoogle Scholar
  130. Kreis W (1987) Untersuchungen zur Kompartimentierung der Cardenolid-Biotransformation in Digitalis lanata Zellkulturen. Dissert, Tübingen, GermanyGoogle Scholar
  131. Kreis W, May U (1990) Cardeolide glucosyltranferase and glucohydrolases in leaves and cell culture of three Digitalis species. J Plant Physiol 136:247–252Google Scholar
  132. Kreis W, Reinhard E (1985) Characterization of habituated Digitalis lanata cell cultures. Acta Agron 34:15Google Scholar
  133. Kreis W, Reinhard E (1989) The production of secondary metabolites by plant cells cultivated in bioreactors. Planta Med 55:409–416PubMedGoogle Scholar
  134. Kreis W, Reinhard E (1990) Production of deacetyllanatoside C by Digitalis lanata cell cultures. In: Nijkamp HJJ, Van der Plas LHW, Van Aartrijk J (eds) Progress in plant cellular and molecular biology. Kluwer Academic, Dordrecht, Netherlands, pp 706–711Google Scholar
  135. Kreis W, Müller-Uri F (2010) Biochemistry of sterols, cardiac glycosides, brassinosteroids, phytoecdysteroids and steroid saponins. In: Wink M (ed) Annual Plant Rev 40. Biochemistry of Plant Secondary Metabolism. Sheffield, CRC Press pp. 304–363Google Scholar
  136. Kreis W, May U, Reinhard E (1986) UDP-glucose: digitoxin 16′-O-glucosyltransferase from suspension-cultured Digitalis lanata cells. Plant Cell Rep 5:442–445Google Scholar
  137. Kreis W, Hoelz H, May U, Reinhardt E (1993) Storage of cardenolides in Digitalis lanata cells. Effect of dimethylsulfoxide (DMSO) on cardenolide uptake and release. Plant Cell Tiss Org Cult 20:191–199Google Scholar
  138. Kreis W, Hensel A, Stuhlemmer U (1998) Cardenolide biosynthesis in foxglove. Planta Med 64:491–499Google Scholar
  139. Kuate SP, Padua RM, Eissenbeiss WF, Kreis W (2008) Purification and characterization of malonyl-coenzymeA: 21-hydroxypregnane 21-o-malonyltransferase (Dp21MaT) from leaves of Digitalis purpurea L. Phytochemistry 69:619–626PubMedGoogle Scholar
  140. Kuberski C, Scheibner H, Steub D, Diettrich B, Luckner M (1984) Embryogenesis and cardenolide formation in tissue cultures of Digitalis lanata. Phytochemistry 23:1407–1412Google Scholar
  141. Kumar J, Gupta PK (2008) Molecular approaches for improvement of medicinal and aromatic plants. Plant Biotechnol Rep 2:93–112Google Scholar
  142. Lapeña L, Brisa MC (1995) Influence of culture conditions on embryo formation and maturation in auxin-induced embryogenic cultures of Digitalis obscura. Plant Cell Rep 14:310–313Google Scholar
  143. Lapeña L, Pérez-Bermúdez P, Segura J (1992) Factors affecting shoot proliferation and vitrification in Digitalis obscura cultures. In Vitro Cell Dev Biol Plant 28:121–124Google Scholar
  144. Launert E (1981) Edible and medicinal plants. Hamlyn, London, UKGoogle Scholar
  145. Lehmann U, Moldenhauer D, Thomar S, Diettrich B, Luckner M (1995) Regeneration of plants from Digitalis lanata cells transformed with Agrobacterium tumefaciens carrying bacterial genes encoding neomycin phosphotransferase II and β-glucuronidase. J Plant Physiol 147:53–57Google Scholar
  146. Lichius JJ, Bugge G, Wichtl M (1992) Cardenolide glycosides in Digitalis cross-breeding. 2 reciprocal cross-breedings of Digitalis lanata. Arch Pharm 325:167–171Google Scholar
  147. Lichius JJ, Weber R, Kirschke M, Liedke S, Brieger D (1995) Ein Wiener im Café – Neues vom Fingerhut und seinen Kaffeesäureestern. Dtsch Apotheker Ztg 135:3794–3800Google Scholar
  148. Liedke S, Wichtl M (1997) Glucodiginin und Glucodigifolein aus Digitalis purpurea L. Pharmazie 52:79–80Google Scholar
  149. Lindemann P, Luckner M (1997) Biosynthesis of pregnane derivatives in somatic embryos of Digitalis lanata. Phytochemistry 46:507–513Google Scholar
  150. Lindemann P, Finsterbusch A, Pangert A, Luckner M (2000) Partial cloning of a Δ5-3β-hydroxysteroid dehydrogenase from Digitalis lanata. In: Okamoto M, Ihimura Y, Nawata H (eds) Molecular steroidogenesis. Proceedings of Yamada Conference LII. Frontiers Science Series 29, vol XXIV. Universal Academy Press, Tokyo, Japan, pp 333–334Google Scholar
  151. López-Lázaro M (2007) Digitoxin as anticancer agent with selectivity for cancer cells: possible mechanisms involved. Exp Opin Ther Targets 11:1043–1053Google Scholar
  152. Loudon JC (1829) Encyclopeadia of plants. Longman, London, UKGoogle Scholar
  153. Loveless MD, Hamrick JL (1984) Ecological determinants of genetic structure in plant populations. Annu Rev Ecol Syst 15:65–95Google Scholar
  154. Luckner M, Diettrich B (1985) Formation of cardenolides in cell and organ cultures of Digitalis lanata. In: Neumann KH, Barz W, Reinhard E (eds) Primary and secondary metabolism of plant cell cultures. Springer, Berlin, Germany, pp 154–163Google Scholar
  155. Luckner M, Diettrich B (1987a) Die Bildung herzwirksamer Glykoside in Gewebekulturen von Digitalis lanata. Wiss Z Univ Halle XXXVI Heft 5:79–89Google Scholar
  156. Luckner M, Diettrich B (1987b) Biosynthesis of cardenolides in cell cultures of Digitalis lanata – the result of a new strategy. In: Green CE, Somers DA, Hackett WP, Biesboer DD (eds) Plant tissue and cell culture. Allan R Liss, New York, USA, pp 187–197Google Scholar
  157. Luckner M, Diettrich B (1988) Cardenolides. In: Constabel F, VasiI K (eds) Cell culture and somatic cell genetics of plants, vol 5, Phytochemicals in plant cell cultures. Academic, San Diego, CA, USA, pp 193–212Google Scholar
  158. Luckner M, Wichtl M (2000) Digitalis. Wiss. Verlagsgesell, Stuttgart, GermanyGoogle Scholar
  159. Lui JHC, Staba EJ (1979) Effects of precursors on serially propagated Digitalis lanata leaf and root cultures. Phytochemistry 18:1913–1916Google Scholar
  160. Luta M, Hensel A, Kreis W (1997) (eds) 45th Annual congress on medicinal plant research, Regensburg, GermanyGoogle Scholar
  161. Luta M, Hensel A, Kreis W (1998) Synthesis of cardenolide glucosides and putative biosynthetic precursors of cardenolide glycosides. Steroids 63:44–49PubMedGoogle Scholar
  162. Maier MS, Seldes AM, Gros EG (1986) Biosynthesis of the butenolide ring of cardenolides in Digitalis purpurea. Phytochemistry 25:1327–1329Google Scholar
  163. Mastenbroek C (1985) Cultivation and breeding of Digitalis lanata in the Netherlands. Br Heart J 54:262–268Google Scholar
  164. Matsumoto M, Koga S, Shoyama Y, Nishioka I (1987) Phenolic glycoside composition of leaves and callus cultures of Digitalis purpurea. Phytochemistry 26:3225–3227Google Scholar
  165. May U, Kreis W (1997) Purification and characterization of the cardenolide-specific β-glucohydrolase CGH I from Digitalis lanata EHRH. leaves. Plant Physiol Biochem 35:523–532Google Scholar
  166. Meier W, Fürst A (1962) Digicitrin, ein neues Flavon aus den Blättern des roten Fingerhuts. Helv Chim Acta 45:232–239Google Scholar
  167. Melchior H (1964) Scrophularoideae. A. Engler’s Syllabus der Pflanzenfamilien 452, vol 2, Gebr. Borntraeger, Berlin, GermanyGoogle Scholar
  168. Michaelis P (1929) Über den Einfluß von Kern und Plasma auf die Vererbung. Biol Zbl 49:302–320Google Scholar
  169. Milek F, Reinhard E, Kreis W (1997) Influence of precursors and inhibitors of the sterol pathway on sterol and cardenolide metabolism in Digitalis lanata Ehrh. Plant Physiol Biochem 35:111–121Google Scholar
  170. Morán M, Cacho M, Fernández-Tárrago J (1999) A protocol for the cryopreservation of Digitalis thapsi L. cell cultures. Cryo Lett 20:193–198Google Scholar
  171. Murashige T, Skoog F (1962) A revised medium for rapid growth bioassays with tobacco tissue culture. Physiol Plant 15:473–497Google Scholar
  172. Nazir R, Reshi Z, Wafai BA (2008) Reproductive ecology of medicinally important Kashmir Himalayan species of Digitalis L. Plant Species Biol 23:59–70Google Scholar
  173. Nebauer SG, Del Castillo-Agudo L, Segura J (1999a) RAPD variation within and among natural populations of outcrossing willow-leaved foxglove (Digitalis obscura L.). Theor Appl Genet 98:985–994Google Scholar
  174. Nebauer SG, Del Castillo-Agudo L, Segura J (1999b) Cardenolide variation within and among natural populations of Digitalis obscura. J Plant Physiol 154:426–430Google Scholar
  175. Nebauer SG, Del Castillo-Agudo L, Segura J (2000) An assessment of genetic relationships within the genus Digitalis based on PCR-generated RAPD markers. Theor Appl Genet 100:1209–1216Google Scholar
  176. Nesher M, Scpolansky U, Rosen H, Lichstein D (2007) The digitalis-like steroid hormones: new mechanisms of action and biological significance. Life Sci 80:2093–2107PubMedGoogle Scholar
  177. Newman RA, Yang P, Pawlus AD, Block KI (2008) Cardiac glycosides as novel cancer therapeutic agents. Mol Interv 8:36–40PubMedGoogle Scholar
  178. Nickel SL, Staba EJ (1997) RIA-test of Digitalis plants and tissue cultures. In: Barz W, Reinhard E, Zenk MH (eds) Plant tissue and its biotechnological application. Springer, Berlin, pp 278–284Google Scholar
  179. Nover L, Luckner M, Tewes A, Garve R, Vogel E (1980) Cell specialization and cardiac glycoside formation in cell cultures of Digitalis species. Acta Hortic 96:65–74Google Scholar
  180. Ohlsson AB, Björk L, Gatenbeck S (1983) Effect of light on cardenolide production by Digitalis lanata tissue cultures. Phytochemistry 22:2447–2450Google Scholar
  181. Olmsted RG, de Pamphilis CW, Wolfe AD, Young ND, Elisons WJ, Reeves PD (2001) Disintegration of the Scrophulariaceae. Am J Bot 88:348–361Google Scholar
  182. Oppermann UCT, Maser E (1996) Characterization of a 3α-hydroxysteroid dehydrogenase/carbonyl reductase from the gram-negative bacterium Commamonas testosteroni. Eur J Biochem 209:459–466Google Scholar
  183. Oxelman B, Kornhall F, Olmsted RG, Bremer B (2005) Further disintegration of Scrophulariaceae. Taxon 54:411–425Google Scholar
  184. Pádua RM, Waibel R, Kuate SP, Schebitz PK, Hahn S, Gmeiner P, Kreis W (2008) A simple chemical method for synthesizing malonyl hemiesters of 21-hydroxypregnanes, potential intermediates in cardenolide biosynthesis. Steroids 73:458–465PubMedGoogle Scholar
  185. Palazón J, Bonfill M, Cusidó RM, Piñol MT, Morales C (1995) Effects of auxin and phenobarbital on morphogenesis and productioin of digitoxin in Digitalis callus. Plant Cell Physiol 36:347–352Google Scholar
  186. Paranhos A, Fernández-Tárrago J, Corchete P (1999) Relationship between active oxygen species and cardenolide production in cell cultures of Digitalis thapsi: effect of calcium restriction. New Phytol 141:51–60Google Scholar
  187. Pérez-Alonso N, Wilken D, Gerth A, Jähn A, Nitzsche HM, Kerns G, Capote-Perez A, Jiménez E (2009) Cardiotonic glycosides from biomass of Digitalis purpurea L. cultured in temporary immersion systems. Plant Cell Tiss Organ Cult 99:151–156Google Scholar
  188. Pérez-Bermudez P, Brisa MC, Cornejo MJ, Segura J (1984) In vitro morphogenesis from excised leaf explants of Digitalis obscura L. Plant Cell Rep 3:8–9Google Scholar
  189. Pérez-Bermudez P, Cornejo MJ, Segura J (1990) Digitalis spp.: In Vitro production of haploids. In: Bajaj YPS (ed) Biotechnology in agriculture and forestry, vol 12: Haploids in crop improvement I. Springer, Berlin, Germany, pp 277–289Google Scholar
  190. Pérez-Bermudez P, Seitz HU, Gavidia I (2002) A protocol for rapid micropropagation of endangered Isoplexis. In Vitro Cell Dev Biol Plant 38:178–182Google Scholar
  191. Pérez-Bermúdez P, Cornejo MJ, Segura J (1985a) A morphogenetic role for ethylene in hypocotyls cultures of Digitalis obscura L. Plant Cell Rep 4:188–190Google Scholar
  192. Pérez-Bermúdez P, Cornejo MJ, Segura J (1985b) Pollen plant formation from anther cultures of Digitalis obscura L. Plant Cell Tiss Org Cult 5:63–68Google Scholar
  193. Pérez-Bermúdez P, Falcó JM, Segura J (1987) Morphogenesis in root tip meristem cultures of Digitalis obscura L. J Plant Physiol 130:87–91Google Scholar
  194. Petersen M, Seitz HU (1985) Cytrochrome P-450-dependent digitoxin 12β-hydroxylase from cell cultures of Digitalis lanata. FEBS Lett 188:11–14Google Scholar
  195. Petersen M, Seitz HU, Reinhard E (1988) Characterization and localization of digitoxin 12β-hydroxylase from cell cultures of Digitalis lanata Ehrh. Z Naturforsch 43c:199–206Google Scholar
  196. Pilgrim (1977) Ein beitrag zur suspensionskultur (batch) von Digitalis purpurea- Geweben. Pharmazie 32:130–131Google Scholar
  197. Pollack RM (2004) Enzymatic mechanisms for catalysis of enolization: ketosteroid isomerase. Bioorg Chem 32:341–353PubMedGoogle Scholar
  198. Pradel H, Lehmann U, Diettrich B, Luckner M (1997) Hairy root cultures of Digitalis lanata: secondary metabolism and plant regeneration. J Plant Physiol 151:209–215Google Scholar
  199. Prassas I, Diamandis EP (2008) Novel therapeutic applications of cardiac glycosides. Nat Rev Drug Discov 7:926–935PubMedGoogle Scholar
  200. Probert R, Adam J, Coneybeer J, Crawford A, Hay F (2007) Seed quality for conservation is critically affected by pre-storage factors. Aust J Bot 55:326–335Google Scholar
  201. Rajukkanu K, Dhakshinamoorthy M, Arumugan R, Duraisamy P (1981) Seasonal influence on the total glycoside content of foxglove (Digitalis lanata). J Agric Sci 96:255Google Scholar
  202. Ramstad E, Beal JL (1960) Mevalonic acid as a precursor in the biogenesis of digitoxigenin. J Pharm Pharmacol 12:552–556PubMedGoogle Scholar
  203. Rao RS, Ravishankar GA (2002) Plant cell cultures: chemical factories for secondary metabolites. Biotechnol Adv 20:101–153PubMedGoogle Scholar
  204. Reinbothe C, Diettrich B, Luckner M (1990) Regeneration of plants from somatic embryos of Digitalis lanata. J Plant Physiol 137:224–228Google Scholar
  205. Reinbothe C, Tewes A, Luckner M, Reinbothe S (1992a) Differential gene expression during somatic embryogenesis in Digitalis lanata analyzed by in vivo and in vitro protein synthesis. Plant J 2:917–926Google Scholar
  206. Reinbothe C, Tewes A, Reinbothe S (1992b) Altered gene expression during somatic embryogenesis in Nicotiana plumbaginifolia and Digitalis lanata. Plant Sci 82:47–58Google Scholar
  207. Reinhardt E (1974) Biotransformation of plant tissue cultures. In: Street HD (ed) Tissue culture and plant science. Academic, London, UK, pp 443–459Google Scholar
  208. Reinhardt E, Alfermann AW (1980) Biotransformation by plant cell cultures. In: Fiechter A (ed) Advances in biochemical engineering, vol 16, Plant cell cultures I. Springer, Berlin, Germany, pp 49–83Google Scholar
  209. Reinhardt E, Boy M, Kaiser F (1975) Umwandlung von Digitalis-Glykosiden durch Zellsuspensionskulturen. Planta Med Sup 27:163–168Google Scholar
  210. Renau-Morata B, Nebauer SG, Arrillaga I, Segura J (2005) Assessments of somaclonal variation in micropropagated shoots of Cedrus: consequences of axillary bud breaking. Tree Genet Genomes 1:3–10Google Scholar
  211. Ringer KL, McConkey ME, Davis EM, Rushing GW, Croteau R (2003) Monoterpene double-bond reductases of the (−)-menthol biosynthetic pathway: isolation and characterization of cDNAs encoding (−)-isopiperitenone reductase and (+)-pulegone reductase of peppermint. Arch Biochem Biophys 418:80–92PubMedGoogle Scholar
  212. Roca-Pérez L, Perez-Bermudez P, Boluda R (2002) Soil characteristics, mineral nutrients, biomass, and cardenolide production in Digitalis obscura wild populations. J Plant Nutr 25:2015–2026Google Scholar
  213. Roca-Pérez L, Boluda R, Gavidia I, Pérez-Bermudez P (2004a) Seasonal cardenolide production and Dop5Br gene expression in natural populations of Digitalis obscura. Phytochemistry 65:1869–1878PubMedGoogle Scholar
  214. Roca-Pérez L, Boluda R, Perez-Bermudez P (2004b) Soil-plant relationhips, micronutrient contents, and cardenolide production in natural populations of Digitalis obscura. J Plant Nutr Soil Sci 167:79–84Google Scholar
  215. Roca-Pérez L, Pérez-Bermudez P, Gavidia I, Boluda R (2005) Relationships among soil characteristics, plant macronutrients, and cardenolide accumulation in natural populations of Digitalis obscura. J Plant Nutr Soil Sci 168:774–780Google Scholar
  216. Rücker W (1988) Digitalis spp.: in vitro culture, regeneration and the production of cardenolides and other secondary products. In: Bajaj YPS (ed) Biotechnology in agriculture and forestry, vol 4: Medicinal and aromatic plants I. Springer, Berlin, Germany, pp 388–418Google Scholar
  217. Rücker W, Jentsch K, Wichtl M (1981) Organdifferenzierung und Glykosidbildung bei in vitro kultivierten Blattexplantaten von Digitalis purpurea L. Z Pflanzenphysiol 102:207–220Google Scholar
  218. Saito K, Yamazaki M, Shimonura K, Yoshimatsu K, Murakoshi I (1990) Genetic transformation of foxglove (Digitalis purpurea) by chimeric foreign genes and production of cardioactive glycosides. Plant Cell Rep 9:121–124Google Scholar
  219. Sales E, Nebauer SG, Mus M, Segura J (2001a) Population genetic study in the balearic endemic plant species Digitalis minor (Scrophulariaceae) using RAPD markers. Am J Bot 88:1750–1759PubMedGoogle Scholar
  220. Sales E, Nebauer SG, Arrillaga I, Segura J (2001b) Cryopreservation of Digitalis obscura L. selected genotypes by encapsulation-dehydration. Planta Med 67:833–838PubMedGoogle Scholar
  221. Sales E, Nebauer SG, Arrillaga I, Segura J (2002) Plant hormones and Agrobacterium tumefaciens strain 82.139 induce efficient plant regeneration in the cardenolide-producing plant Digitalis minor. J Plant Physiol 159:9–16Google Scholar
  222. Sales E, Segura J, Arrillaga I (2003) Agrobacterium tumefaciens-mediated genetic transformation of the cardenolide-producing plant Digitalis minor L. Planta Med 69:143–147PubMedGoogle Scholar
  223. Sales E, Muñoz-Bertomeu J, Ros R, Arrillaga I, Segura J (2007) Enhancement of cardenolide and phytosterol levels by expression of an N-terminally truncated 3-hydroxy-3-methylglutaryl CoA reductase in transgenic Digitalis minor. Planta Med 73:605–610PubMedGoogle Scholar
  224. Satoh S, Ishii H, Oyama Y, Okumurs T (1956) Digitalis glucosides. The new glucosides. J Pharm Soc Jpn 75:1573Google Scholar
  225. Satoh S, Ishii H, Oyama Y, Okumurs T (1962) Isolation of digipronin, purpnin and purpronin. Chem Pharm Bull 19:37–42Google Scholar
  226. Schaffer J, Stein M (1971) Influence of cultivating and harvesting conditions on foliage and quantity of total glycosides abd digitoxin in Digitalis purpurea L. Pharmazie 26:771–776Google Scholar
  227. Schaller F, Kreis W (1996) Clonal Propagation of Isoplexis canariensis. Planta Med 62:450–452PubMedGoogle Scholar
  228. Schaller F, Kreis W (2006) Cardenolide genin pattern in Isoplexis plants and shoot cultures. Planta Med 72:1149–1156PubMedGoogle Scholar
  229. Scheibner H, Björk L, Schulz U, Diettrich B, Luckner M (1987) Influence of light on cardenolide accumulation in somatic embryos of Digitalis lanata. J Plant Physiol 130:211–219Google Scholar
  230. Scheibner H, Diettrich B, Schulz U, Luckner M (1989) Somatic embryos of Digitalis lanata. Synchronization of development and cardenolide biosynthesis. Biochem Physiol Pflanzen 184:311–320Google Scholar
  231. Schneider V (1988) Isolation und Verklonung von Digitalis lanata Suspensionszell-protoplasten sowie die Regeneration zu Pflanzen und Übertragbarkeit des Verfahrens auf andere Systeme. Diss, Halle, GermanyGoogle Scholar
  232. Schöner S, Reinhard E (1982) Clonal multiplication of Digitalis lanata by meristem culture. Planta Med 45:155PubMedGoogle Scholar
  233. Schöner S, Reinhard E (1986) Long-term cultivation of Digitalis lanata clones propagated in vitro: cardenolide content of the regenerated plants. Planta Med 52:478–481Google Scholar
  234. Schöninger R, Lindemann P, Grimm R, Eckerskorn C, Luckner M (1998) Purification of the cardenolide 16′-O-glucohydrolase from Digitalis lanata ERHR. Planta 205:477–482Google Scholar
  235. Schröder W (1985) Einsatz genetisch-züchterischer Methoden zur Verbesserung der Sekundärstoffbildung in pflanzlichen Zellkulturen. Diss, Akad Wiss DDR, Berlin, GermanyGoogle Scholar
  236. Segura J, Perez-Bermudez P (1992) Biotechnology of medicinal plants. In: Villa TG, Abalde J (eds) Profiles on biotechnology. Servicio de Publicacions, Universidade de Santiago de Compostela, Spain, pp 667–676Google Scholar
  237. Seidel S, Reinhardt E (1987) Major cardenolide glycosides in embryogenic suspension cultures of Digitalis lanata. Planta Med 53:308–309PubMedGoogle Scholar
  238. Seidel S, Kreis W, Reinhard E (1990) Δ5-3β-Hydroysteroid dehydrogenase/Δ5-Δ4-ketosteroid isomerase (3β-HSD), a possible enzyme of cardiac glycoside biosynthesis, in cell cultures and plants of Digitalis lanata EHRH. Plant Cell Rep 8:621–624Google Scholar
  239. Seitz HU, Gärtner DE (1994) Enzymes is cardenolide-accumulating shoot cultures of Digitalis purpurea L. Plant Cell Tiss Org Cult 38:337–344Google Scholar
  240. Shi H-P, Lindemann P (2006) Expression of recombinant Digitalis lanata EHRH. Cardenolide 16′-O-glucohydrolase in Cucumis sativus L. hairy roots. Plant Cell Rep 25:1193–1198PubMedGoogle Scholar
  241. Staba EJ (1962) Production of cardiac glycosides by plant tissue cultures. I. Nutritional requirements in tissue cultures of Digitalis lanata and Digitalis purpurea. J Pharm Sci 51:249–254PubMedGoogle Scholar
  242. Stein M (1963) Der Einfluß von Umweltbedingungen auf die Artkreuzung Digitalispurpurea L. × Digitalis lutea L. Diss. Halle, GermanyGoogle Scholar
  243. Stuhlemmer U, Kreis W (1996) Cardenolide formation and activity of pregnane-modifying enzymes in cell suspension cultures, shoot cultures and leaves of Digitalis lanata. Plant Physiol Biochem 34:85–91Google Scholar
  244. Stuhlemmer U, Kreis W, Eisenbeiss M, Reinhard E (1993) Cardiac glycosides in partly submerged shoots of Digitalis lanata. Planta Med 59:539–545PubMedGoogle Scholar
  245. Stuhlfauth T, Klug K, Fock HP (1987) The production of secondary metabolites by Digitalis lanata during CO2 enrichment and water stress. Phytochemistry 26:2735–2739Google Scholar
  246. Sucher NJ, Carles MC (2008) Genome-based approaches to the authentication of medicinal plants. Planta Med 74:603–623PubMedGoogle Scholar
  247. Sutor R, Kreis W (1996) Partial purification and characterization of the cell-wall-associated lanatoside 15′-O-acetylesterase from Digitalis lanata suspension cultures. Plant Physiol Biochem 34:763–770Google Scholar
  248. Sutor R, Hoelz H, Kreis W (1990) Lanatoside 15′-O-acetylesterase from Digitalis lanata plants and cell cultures. J Plant Physiol 136:289–294Google Scholar
  249. Sutor R, Kreis W, Hoelz H, Reinhard E (1993) Acetyl coenzyme A:digitoxin 15`-O-acetyltransferase from Digitalis lanata plants and suspension cultures. Phytochemistry 32:569–573Google Scholar
  250. Sventenius ER (1968) Plantae macronesiensis novae vel minus cognitae. Index seminum quae hortus acclimatationis plantarum Arautapae. INIA-MAPA, Madrid, SpainGoogle Scholar
  251. Taskova RM, Gotfredsen CH, Jensen SR (2005) Chemotaxonomic markers in Digitalideae (Plantaginaceae). Phytochemistry 66:1440–1447PubMedGoogle Scholar
  252. Tewes A, Wappler A, Peschke EM, Garve R, Nover L (1982) Morphogenesis and embryogenesis in long-term cultures of Digitalis. Z Pflanzenphyiosl 106:311–324Google Scholar
  253. Theurer C, Kreis W, Reinhardt E (1998) Effects of digitoxigenin, digoxigenin, and various cardiac glycosides on cardenolide accumulation in shoot cultures of Digitalis lanata. Planta Med 64:705–710PubMedGoogle Scholar
  254. Thorn A, Egerer-Sieber C, Jäger CM, Herl V, Müller-Uri F, Kreis W, Muller Y (2008) The crystal structure of progesterone 5β-reductase from Digitalis lanata defines a novel class of short-chain dehydrogenases/reductases. J Biol Chem 283:17260–17269PubMedGoogle Scholar
  255. Tschesche R (1966) Plant steroids with 21 carbon atoms. Fortschr Chem Org Naturst 24:99–148PubMedGoogle Scholar
  256. Tschesche R (1971) Zur Biogenese der Cardenolid-und Bufadienolidglykoside. Planta Med Sup 4:34–39Google Scholar
  257. Tschesche R, Balle G (1963) Zur Konstitution der Samensaponine von Digitalis lanata Ehrh. Tetrahedron 19:2323–2332Google Scholar
  258. Tschesche R, Brügmann G (1964) Zur Konstitution des Diginigenis und Digifologenins. Tetrahedron 20:1469–1475Google Scholar
  259. Tschesche R, Buschauer G (1957) Zur Konstitution desv Diginin, Digifolein und Lanafolein. Liebigs Ann Chem 603:59–75Google Scholar
  260. Tschesche R, Wulff G (1961) Über Digalogenin, ein neues Sapogenin aus den Samen von Digitalis purpurea. Chem Ber 94:2019–2026Google Scholar
  261. Tschesche R, Wulff G, Balle G (1962) Über das gemeinsame Vorkommen von 25α- und 25β-Sapogeninen in den Saponinen von Digitalis purpurea L und Digitalis lanata Ehrh. Tetrahedron 18:959–967Google Scholar
  262. Tschesche R, Seidel L, Sharma C, Wulff G (1972) Steroid saponins with more than one sugar chain. VI. Lanatigoside and lanagitoside, two bisdesmosidic 22-hydroxyfurostanol glycosides from the leaves of Digitalis lanata Ehrh. Chem Ber 105:3397–3406PubMedGoogle Scholar
  263. Tschesche R, Javellana AM, Wulff G (1974) Purpureagitosid, ein bisdesmosidisches 22-Hydroxyfurostaol-Glykosid aus den Blättern von Digitalis purpurea L. Chem Ber 107:2828–2834Google Scholar
  264. Uphof JC (1959) Dictionary of economic plants. Weinheim, GermanyGoogle Scholar
  265. Usai M, Atzei AD, Marchetti M (2007) Cardenolides content in wild Sardinian Digitalis purpurea populations. Nat Prod Res 21:798–804PubMedGoogle Scholar
  266. Vela M (1996) Morfogenesis, producción de glucósidos cardiotónicos y lectrofusión de protoplastos en sistemas celulares de Digitalis obscura L. y Digitalis lanata Ehrh. PhD Thesis, University of Valencia, SpainGoogle Scholar
  267. Vela S, Gavidia I, Pérez-Bermudez P, Segura J (1991) Micropropagation of juvenile and adult Digitalis obscura and cardenolide content of clonally propagated plants. In Vitro Cell Dev Biol Plant 27:143–146Google Scholar
  268. Verpoorte R, Alfermann AW (2000) Metabolic engineering of plant secondary metabolism. Kluwer Academic, Dordrecht, NetherlandsGoogle Scholar
  269. Vivo RP, Krim SR, Pérez J, Inklab M, Tenner T, Hodgson J (2008) Digoxin: current use and approach to toxicity. Am J Med Sci 336:423–428PubMedGoogle Scholar
  270. von Gärtner KF (1849) Versuche und Beobachtungen über die Bastarderzeugung im Pflanzenreich. Germany, StuttgartGoogle Scholar
  271. Warneck HM, Seitz HU (1990) 3β- hydroxysteroid oxidoreductase in suspension cultures of Digitalis lanata Ehrh. Z Naturforsch 45c:963–972Google Scholar
  272. Wasserstrom JA, Aistrup JL (2005) Digitalis: new actions for an old drug. Am J Physiol Heart Circ Physiol 289:H1781–H1793PubMedGoogle Scholar
  273. Weiler EW, Westenkemper P (1979) Rapid selection of strains of Digitalis lanata Ehrh. with high digoxin content. Planta Med 35:316–322Google Scholar
  274. Wendroth S, Seitz HU (1990) Characterization and localization of progesterone 5α-reductase from cell cultures of foxglove (Digitalis lanata EHRH). Biochem J 266:41–46PubMedGoogle Scholar
  275. Werner K (1960) Zur Nomenklatur und Taxonomie von Digitalis L. Bot Jahrb 79:218–254Google Scholar
  276. Werner K (1961) Wuchsform und Verbreitung als Grundlagen der taxonomischen Gliederung von Digitalis L. Diss, Halle, GermanyGoogle Scholar
  277. Werner K (1964) Die Verbreitung der Digitalis-Arten. Wiss Z Univ Halle-Wittenberg. Math-Naturwiss Reihe 13:453–486Google Scholar
  278. Werner K (1965) Taxonomie und Phylogenie der Gattungen Isoplexis (Lindl.) Benth. und Digitalis L. Feddes Rep 70:109–135Google Scholar
  279. Werner K (1966) Die Wuchsformen der Gattungen Isoplexis (Lindl.) Benth. und Digitalis L. Bot Jahrb 85:88–149Google Scholar
  280. Wiegrebe W, Wichtl M (1993) HPLC-determination of cardenolides in Digitalis leaves after solid-phase extraction. J Chromatogr 630:402–407PubMedGoogle Scholar
  281. Wilson JH (1906) Infertile hybrids. Report 3. In: International conference on genetics, London, UKGoogle Scholar
  282. Wurst F, Hoche C, Bancher E (1983) Veränderungen des Phytosterolgehaltes in Digitalislanata unter Wasserstreß. Phyton 23:91–99Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Area Producción Vegetal, Dpto. Agricultura y EconomÍa Agraria, Escuela Politécnica SuperiorUniversidad de ZaragozaHuescaSpain
  2. 2.Lehrstuhl für Pharmazeutische Biologie, Department für BiologieFriedrich-Alexander-Universität Erlangen-NürnbergErlangenGermany
  3. 3.Departamento Biología vegetal, ETSIAUniversidad Politécnica de ValenciaValenciaSpain
  4. 4.Dpto. Biología Vegetal, Facultad de FarmaciaUniversidad de ValenciaBurjassot, ValenciaSpain

Personalised recommendations