Skip to main content

Abstract

Nicotiana is a relatively large genus that has been used widely in plant breeding and genetics research because of the economic importance of the cultivated species, N. tabacum L., and also because of the use of several species as model systems in plant biology. The objectives of this chapter are (1) to present information related to the evolution, taxonomy, and cytogenetics of cultivated tobacco and its wild relatives, (2) to discuss the conservation and utilization of genetic diversity within Nicotiana for improvement of the cultivated form, and (3) to review the use of Nicotiana species as platforms for experimentation in basic plant genetics research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • An G, Watson BD, Cheng CC (1986) Transformation of tobacco, tomato, potato, and Arabidopsis thaliana using a binary Ti vector system. Plant Physiol 81:301–305

    PubMed  CAS  Google Scholar 

  • Aoki S, Ito M (2000) Molecular phylogeny of Nicotiana (Solanaceae) based on the nucleotide sequence of the matK gene. Plant Biol 2:316–324

    CAS  Google Scholar 

  • Apple JL (1962) Transfer of resistance to black shank (Phytophthora parasitica var. nicotianae) from Nicotiana plumbaginifolia to N. tabacum. Phytopathology 52:1 (Abstr)

    Google Scholar 

  • Aycock MK, Mann TJ, Matzinger DF (1963) Investigations with a form of cytoplasmic male-sterility in flue-cured tobacco. Tob Sci 7:130–135

    Google Scholar 

  • Bai D, Reeleder R, Brandle JE (1995) Identification of two RAPD markers tightly linked with the Nicotiana debneyi gene for resistance to black root rot of tobacco. Theor Appl Genet 91:1184–1189

    CAS  Google Scholar 

  • Bai D, Reeleder R, Brandle JE (1996) Production and characterization of tobacco addition lines carrying Nicotiana debneyi chromosomes with a gene for resistance to black root rot. Crop Sci 36:852–857

    Google Scholar 

  • Barendse GWM, Van der Weerden G (1997) The Solanaceae germplasm bank at the Botanical Garden of Nijmegen. Bot Gard Conserv News 2:31–33

    Google Scholar 

  • Barton KA, Binns AN, Matzke AJM, Chilton M-D (1983) Regeneration of intact tobacco plants containing full length copies of genetically engineered T-DNA, and transmission of T-DNA to R1 progeny. Cell 32:1033–1043

    PubMed  CAS  Google Scholar 

  • Bates GW (1990) Asymmetric hybridization between Nicotiana tabacum and N. repanda by donor recipient protoplast fusion: transfer of TMV resistance. Theor Appl Genet 80:481–487

    Google Scholar 

  • Baulcombe DC (1999) Fast forward genetics based on virus-induced gene silencing. Curr Opin Plant Biol 2:109–113

    PubMed  CAS  Google Scholar 

  • Berbec A (2001) Floral morphology and some other characteristics of iso-genomic alloplasmics of Nicotiana tabacum L. Beitrage zur Tabakforschung International 19:309–314

    Google Scholar 

  • Berbec A, Laskowska D (2005) Investigations of isogenomic alloplasmics of flue-cured tobacco Nicotiana tabacum cv. Wislica. Beitrage zur Tabakforschung Int 21:258–263

    Google Scholar 

  • Bindler G, van der Hoeven R, Gunduz I, Plieske J, Ganal M, Rossi L, Gadani F, Donini P (2007) A microsatellite marker based linkage map of tobacco. Theor Appl Genet 114:341–349

    PubMed  CAS  Google Scholar 

  • Birch RG (1997) Plant transformation: problems and strategies for practical application. Annu Rev Plant Physiol Plant Mol Biol 48:297–326

    PubMed  CAS  Google Scholar 

  • Bland MM, Matzinger DF, Levings CS III (1985) Comparison of the mitochondrial genome of Nicotiana tabacum with its progenitor species. Theor Appl Genet 69:535–541

    CAS  Google Scholar 

  • Bock R (2001) Transgenic plastids in basic research and plant biotechnology. J Mol Biol 312:425–438

    PubMed  CAS  Google Scholar 

  • Bogani P, Lio P, Intrieri MC, Buiatti M (1997) A physiological and molecular analysis of the genus Nicotiana. Mol Phylogenet Evol 7:62–70

    PubMed  CAS  Google Scholar 

  • Bourgin J-P, Nitsch JP (1967) Production of haploid Nicotiana from excised stamens. Ann Physiol Veg 9:377–382

    Google Scholar 

  • Brand DB (1939) The origin and early distribution of New World cultivated plants. Agric Hist 13:109–117

    Google Scholar 

  • Brandle JD, Bai D (1999) Biotechnology: uses and applications in tobacco improvement. In: Davis DL, Nielsen MT (eds) Tobacco production, chemistry, and technology. Blackwell, Oxford, pp 49–65

    Google Scholar 

  • Brooks JE (1952) The mighty leaf. Little Brown, Boston, MA, USA

    Google Scholar 

  • Bui PT, Jenns AE, Schneider SM, Daub ME (1992) Resistance to tobacco mosaic virus and Meloidogyne arenaria in fusion hybrids between Nicotiana tabacum and an N. repanda x N. sylvestris hybrid. Phytopathology 82:1305–1310

    Google Scholar 

  • Burk LG (1967) An interspecific bridge cross – Nicotiana repanda through N. sylvestris to N. tabacum. J Hered 58:215–218

    Google Scholar 

  • Burk LG (1972) Viable hybrids from monosomics of Nicotiana tabacum by N. langsdorffii. Tob Sci 16:43–45

    Google Scholar 

  • Burk LG, Chaplin JF (1979) Hybridization. In: Durbin RD (ed) Nicotiana: procedures for experimental use. USDA Tech Bull No 1586, pp 23–27

    Google Scholar 

  • Burk LG, Gwynn GR, Chaplin JR (1972) Diploidized haploids from aseptically cultured anthers of Nicotiana tabacum: a colchicine method applicable to plant breeding. J Hered 63:355–360

    Google Scholar 

  • Burk LG, Gerstel DU, Wernsman EA (1979) Maternal haploids of Nicotiana tabacum L. from seed. Science 206:585

    PubMed  CAS  Google Scholar 

  • Burns JA (1966) The heterochromatin of two species of Nicotiana. J Hered 57:43–47

    Google Scholar 

  • Cameron DR (1952) Inheritance in Nicotiana tabacum. XXIV. Intraspecific differences in chromosome structure. Genetics 37:288–296

    PubMed  CAS  Google Scholar 

  • Cameron DR (1959) The monosomics of Nicotiana tabacum. Tob Sci 3:164–166

    Google Scholar 

  • Campbell KG, Wernsman EA, Fitzmaurice WP, Burns JA (1994) Construction of a designer chromosome in tobacco. Theor Appl Genet 87:837–842

    Google Scholar 

  • Chaplin JF (1962) Transfer of black shank resistance from Nicotiana plumbaginifolia to flue-cured N. tabacum. Tob Sci 6:184–189

    Google Scholar 

  • Chaplin JF (1987) Die Züchtung von Tabak im Hinblick auf verschieden hohe Alkaloidgehalte. Beitrage zur Tabakforschung Int 14:1–9

    CAS  Google Scholar 

  • Chaplin JF, Ford ZT (1965) Agronomic and chemical characteristics of male-sterile flue-cured tobacco as influenced by cytoplasms of different Nicotiana species. Crop Sci 5:436–438

    Google Scholar 

  • Chaplin JF, Mann TJ (1961) Interspecific hybridization, gene transfer and chromosome substitution in Nicotiana. NC Agric Exp Stat Bull 145:1–31

    Google Scholar 

  • Chaplin JF, Mann TJ (1978) Evaluation of tobacco mosaic resistance factor transferred from burley to flue-cured tobacco. J Hered 69:175–178

    Google Scholar 

  • Chaplin JF, Mann TJ, Apple JL (1961) Some effects of the Nicotiana glutinosa type of mosaic resistance on agronomic characters of flue-cured tobacco. Tob Sci 5:80–83

    Google Scholar 

  • Chaplin JF, Matzinger DF, Mann TJ (1966) Influence of the homozygous and heterozygous mosaic-resistance factor on quantitative character of flue-cured tobacco. Tob Sci 10:81–84

    Google Scholar 

  • Chaplin JF, Stavely JR, Litton CC, Pittarelli GW, West WH, Jr (1982) Catalog of the tobacco introductions in the U.S. Department of Agriculture’s Tobacco Germplasm Collection (Nicotiana tabacum). USDA Agricultural Research Services Agri Rev Man No 27

    Google Scholar 

  • Chase MW, Knapp S, Cox AV, Clarkson JJ, Butsko Y, Joseph J, Savolainen V, Parokonny AS (2003) Molecular systematics and the origin of hybrid taxa in Nicotiana (Solanaceae). Ann Bot 92:107–127

    PubMed  CAS  Google Scholar 

  • Chen CC, Chen SK, Liu MC, Kao YY (2002) Mapping of DNA markers to arms and sub-arm regions of Nicotiana sylvestris chromosomes using aberrant alien addition lines. Theor Appl Genet 105:8–15

    PubMed  CAS  Google Scholar 

  • Clarkson JJ, Knapp S, Garcia FF, Olmstead RG, Leitch AR, Chase MW (2004) Phylogenetic relationships in Nicotiana (Solanaceae) inferred from multiple plastid DNA regions. Mol Phylogenet Evol 33:75–90

    PubMed  CAS  Google Scholar 

  • Clarkson JJ, Lim KY, Kovarik A, Chase MW, Knapp S, Leitch AR (2005) Long-term genome diploidization in allopolyploid Nicotiana section Repandae (Solanaceae). New Phytol 168:241–252

    PubMed  CAS  Google Scholar 

  • Clausen RE, Cameron DR (1944) Inheritance in Nicotiana tabacum. XVIII. Monosomic analysis. Genetics 29:447–477

    PubMed  CAS  Google Scholar 

  • Clausen RE, Cameron DR (1957) Inheritance in Nicotiana tabacum. XXVIII. The cytogenetics of introgression. Proc Nat Acad Sci USA 43:908–913

    PubMed  CAS  Google Scholar 

  • Clausen RE, Goodspeed TH (1925) Interspecific hybridization in Nicotiana. II. A tetraploid glutinosa-tabacum hybrid, an experimental verification of Winge’s hypothesis. Genetics 10:278–284

    PubMed  CAS  Google Scholar 

  • Clausen RE, Lammerts WE (1929) Interspecific hybridization in Nicotiana. X. Haploid and diploid merogony. Am Nat 63:279–282

    Google Scholar 

  • Clausen RE, Mann MC (1924) Inheritance in Nicotiana tabacum. V. The occurrence of haploid plants in interspecific progenies. Proc Natl Acad Sci USA 10:121–124

    PubMed  CAS  Google Scholar 

  • Clayton EE (1947) A wildfire resistant tobacco. J Hered 38:35–40

    PubMed  CAS  Google Scholar 

  • Clayton EE (1967) The transfer of blue mold resistance to tobacco from Nicotiana debneyi. Part III. Development of a blue mold resistant cigar wrapper variety. Tob Sci 11:107–110

    Google Scholar 

  • Clayton EE (1969) The study of resistance to the black root disease of tobacco. Tob Sci 13:30–37

    Google Scholar 

  • Clayton EE, Graham TW, Todd FA, Gaines JG, Clark FA (1958) Resistance to the root knot nematode disease of tobacco. Tob Sci 2:53–63

    Google Scholar 

  • Clayton EE, Heggestad HE, Grosso JJ, Burk LG (1967) The transfer of blue mold resistance to tobacco from Nicotiana debneyi. Part I. Breeding Progress 1937–1954. Tob Sci 11:91–99

    Google Scholar 

  • Danehower DA, Reed SM, Wernsman EA (1989) Identification of the chromosome carrying the gene for production of beta-methylvaleryl sucrose esters in Nicotiana tabacum. Agric Biol Chem 53:2813–2815

    CAS  Google Scholar 

  • De Block M, Herrera-Estrella L, van Montagu M, Schell J, Zambryski P (1984) Expression of foreign genes in regenerated plants and their progeny. EMBO J 3:1681–1689

    PubMed  Google Scholar 

  • de Vries SE, Ferwerda MA, Loonen AEHM, Pijnacker LP, Feenstra WJ (1987) Chromosomes in somatic hybrids between Nicotiana plumbaginifolia and a monoploid potato. Theor Appl Genet 75:170–176

    Google Scholar 

  • del Piano L, Abet M, Sorrentino C, Acanfora F, Cozzolino E, Di Muro A (2000) Genetic variability in Nicotiana tabacum and Nicotiana species as revealed by RAPD markers: 1. Development of the RAPD procedure. Beiträge zur tabakforshung Int 19:1–15

    Google Scholar 

  • Donaldson PA, Bevis E, Pandeya R, Gleddie S (1995) Rare symmetric and asymmetric Nicotiana tabacum (+) N. megalosiphon somatic hybrids recovered by selection for nuclear-encoded resistance genes and in the absence of genome inactivation. Theor Appl Genet 91:747–755

    CAS  Google Scholar 

  • Douglas GC, Wetter LR, Keller WA, Setterfield S (1983) Production of sexual hybrids of Nicotiana rustica × N. tabacum and N. rustica × N. glutinosa via in vitro culture of fertilized ovules. Z Pflanzenzuchtg 90:116–129

    CAS  Google Scholar 

  • Dudits D, Maroy E, Praznovszky T, Olah Z, Gyorgyey J, Cella R (1987) Transfer of resistance traits from carrot into tobacco by asymmetric somatic hybridization: Regeneration of fertile plants. Proc Natl Acad Sci USA 84:8434–8438

    PubMed  CAS  Google Scholar 

  • East EM (1916) Studies on size inheritance in Nicotiana. Genetics 1:164–176

    PubMed  CAS  Google Scholar 

  • East EM (1928) The genetics of the genus Nicotiana. Bibliogr Genet 4:243–318

    Google Scholar 

  • Evans DA, Wetter LR, Gamborg OL (1980) Somatic hybrid plants of Nicotiana glauca and Nicotiana tabacum obtained by protoplast fusion. Physiol Plant 48:225–230

    CAS  Google Scholar 

  • Evans DA, Flick CE, Jensen RA (1981) Disease resistance: incorporation into sexually incompatible somatic hybrids of the genus Nicotiana. Science 213:907–909

    PubMed  CAS  Google Scholar 

  • Evans DA, Bravo JE, Kut SA, Flick CE (1983) Genetic behavior of somatic hybrids in the genus Nicotiana: N. othophora + N. tabacum and N. sylvestris + N. tabacum. Theor Appl Genet 65:93–101

    Google Scholar 

  • Fitzmaurice WP (2002) Interspecific Nicotiana hybrids and their progeny. United States Patent 6,344,597

    Google Scholar 

  • Gadani F, Hayes A, Opperman CH, Lommel SA, Sosinski BR, Burke M, Hi L, Brierly R, Salstead A, Heer J, Fuelner G, Lakey N (2003) Large scale sequencing and analysis of Nicotiana tabacum: the tobacco genome initiative. In: 5th Bergerac tobacco scientific meeting, Bergerac, France, 4–5 Sept 2005

    Google Scholar 

  • Gajos Z (1987) Polalta, the first Polish tobacco variety resistant to Tomato spotted wilt virus was released for regional experimentation and propagation. Wiad Tytoniowa 31:11–17

    Google Scholar 

  • Garner WW, Allard H, Clayton EE (1936) Superior germplasm in tobacco. In: 1936 Yearbook of agriculture. USDA, Washington DC, USA, pp 785–830

    Google Scholar 

  • Gerstel DU (1943) Inheritance in Nicotiana tabacum. XVII. Cytogenetical analysis of glutinosa-type resistance to mosaic disease. Genetics 28:553–556

    Google Scholar 

  • Gerstel DU (1945a) Inheritance in Nicotiana tabacum. XIX. Identification of the tabacum chromosome replaced by one from N. glutinosa in mosaic-resistant Holmes Samsoun tobacco. Genetics 30:448–454

    PubMed  CAS  Google Scholar 

  • Gerstel DU (1945b) Inheritance in Nicotiana tabacum. XX. The addition of Nicotiana glutinosa chromosomes to tobacco. J Hered 36:197–206

    Google Scholar 

  • Gerstel DU (1948) Transfer of the mosaic-resistance factor between H-chromosomes of Nicotiana glutinosa and N. tabacum. J Agric Res 76:219–223

    Google Scholar 

  • Gerstel DU (1960) Segregation in new allopolyploids of Nicotiana. I. Comparison of 6x (N. tabacum × tomentosiformis) and 6× (N. tabacum × otophora). Genetics 45:1723–1734

    PubMed  CAS  Google Scholar 

  • Gerstel DU (1977) Chlorophyll variegation in derivatives from white seedling tobacco × Nicotiana otophora, a preliminary note. Tob Sci 21:33–34

    Google Scholar 

  • Gerstel DU (1980) Cytoplasmic male sterility in Nicotiana (A Review). NC Agricultural Research Services Technical Bulletin No 263

    Google Scholar 

  • Gerstel DU, Burk LG (1960) Controlled introgression in Nicotiana: a cytological study. Tob Sci 4:147–150

    Google Scholar 

  • Gerstel DU, Burns JA (1966) Chromosomes of unusual length in hybrids between two species of Nicotiana. In: Darlington CD, Lewis KR (eds) Chromosomes today, vol 1, Plenum. New York, USA, pp 41–56

    Google Scholar 

  • Gerstel DU, Parry DC (1973) Production and behavior of nullisomics in Nicotiana tabacum. Tob Sci 17:78–79

    Google Scholar 

  • Gerstel DU, Sisson VA (1995) Tobacco. In: Smartt J, Simmonds NW (eds) Evolution of crop plants, 2nd edn. Wiley, New York, USA, pp 458–463

    Google Scholar 

  • Goodspeed TH (1945) Cytotaxonomy of Nicotiana. Bot Rev 11:533–592

    Google Scholar 

  • Goodspeed TH (1954) The genus Nicotiana. Chronica Botanica, Waltham, MA, USA

    Google Scholar 

  • Goodspeed TH (1961) Plant hunters in the Andes. University of California Press, Berkeley, CA, USA

    Google Scholar 

  • Goodspeed TH, Avery P (1941) The twelfth primary trisomic type in Nicotiana sylvestris. Proc Natl Acad Sci USA 27:13–14

    PubMed  CAS  Google Scholar 

  • Goodspeed TH, Clausen RE (1928) Interspecific hybridization in Nicotiana. VIII. The sylvestris-tomentosa-tabacum hybrid and its bearing on the origin of tobacco. Univ Calif Publ Bot 11:127–140

    Google Scholar 

  • Gray JC, Kung SG, Wildman SG, Sheen SJ (1974) Origin of Nicotiana tabacum L. detected by polypeptide composition of fraction I protein. Nature 252:226–227

    PubMed  CAS  Google Scholar 

  • Hinnisdaels S, Bariller L, Mouras A, Sidorov V, Del-Favero J, Veuskens J, Negrutiu I, Jacobs M (1991) Highly asymmetric intergeneric nuclear hybrids between Nicotiana and Petunia: evidence for recombinogenic and translocation events in somatic hybrid plants after “gamma”-fusion. Theor Appl Genet 82:609–614

    Google Scholar 

  • Holmes FO (1938) Inheritance of resistance to tobacco-mosaic disease in tobacco. Phtyopathology 28:553–561

    Google Scholar 

  • Horsch RB, Fry JE, Hoffman NL, Eichholtz D, Rogers SG, Fraley RT (1985) A simple and general method for transferring genes into plants. Science 227:1229–1231

    CAS  Google Scholar 

  • Hosfield GL, Wernsman EA (1974) Effect of alien cytoplasm and fertility restoring factor on growth, agronomic characters, and chemical constituents in a male-sterile variety of flue-cured tobacco. Crop Sci 14:575–577

    CAS  Google Scholar 

  • Japan Tobacco Inc (1994) The genus Nicotiana illustrated. Japan Tobacco, Tokyo, Japan

    Google Scholar 

  • Johnson ES (1999) Identification and marker-assisted selection of a major gene for Phytophthora resistance, its origin, and effect on agronomic characters in tobacco. PhD Dissertation, NC State University, Raleigh, NC, USA

    Google Scholar 

  • Johnson ES, Wolff MS, Wernsman EA (2002a) Marker-assisted selection for resistance to black shank disease in tobacco. Plant Dis 86:1303–1309

    CAS  Google Scholar 

  • Johnson ES, Wolff MF, Wernsman EA, Atchley WR, Shew HD (2002b) Origin of the black shank resistance gene, Ph, in tobacco cultivar Coker 371-Gold. Plant Dis 86:1080–1084

    CAS  Google Scholar 

  • Johnson CS, Wernsman EA, LaMondia JA (2009) Effect of a chromosome segment marked by the Ph p gene for resistance to Phytophthora nicotianae on reproduction of tobacco cyst nematodes. Plant Dis 93:309–315

    Google Scholar 

  • Julio E, Denoyes-Rothan B, Verrier J-L, Dorlhac de Borne F (2006) Detection of QTLs linked to leaf and smoke properties in Nicotiana tabacum based on a study of 114 recombinant inbred lines. Mol Breed 18:69–91

    CAS  Google Scholar 

  • Kasperbauer MA, Collins GB (1972) Reconstitution of diploids from leaf tissue of anther-derived haploids in tobacco. Crop Sci 12:98–101

    Google Scholar 

  • Kawatoko K (1998) Ecological studies on the geographical distribution of the genus Nicotiana. Bulletin of the Leaf Tobacco Research Lab, Japan Tobacco, Inc, Tokyo, Japan

    Google Scholar 

  • Kenton A, Parokonny AS, Gleba YY, Bennett MD (1993) Characterization of the Nicotiana tabacum L. genome by molecular cytogenetics. Mol Gen Genet 240:159–169

    PubMed  CAS  Google Scholar 

  • Kisaka H, Kameya T (1994) Production of somatic hybrids between Daucus carota L. and Nicotiana tabacum. Theor Appl Genet 88:75–80

    CAS  Google Scholar 

  • Kitamura S, Inoue M, Shikazono N, Tanaka A (2001) Relationships among Nicotiana species revealed by the 5S rDNA spacer sequence and fluorescence in situ hybridization. Theor Appl Genet 103:678–686

    CAS  Google Scholar 

  • Knapp S, Chase MW, Clarkson JJ (2004) Nomenclatural changes and a new section classification in Nicotiana (Solanaceae). Taxon 52:73–82

    Google Scholar 

  • Komarnitsky SI, Komarnitsky IK, Cox A, Parokonny AS (1998) Molecular phylogeny of the 5.8S ribosomal RNA genes in 37 species of the Nicotiana genus. Genetika 34:883–889

    Google Scholar 

  • Kostoff D (1943) Cytogenetics of the genus Nicotiana. State Printing House, Sofia, Bulgaria

    Google Scholar 

  • Kostoff D (1948) Cytogenetics of Nicotiana tabacum var Virii resistant to the common tobacco mosaic virus. Curr Sci 17:315–316

    Google Scholar 

  • Kovarik A, Dadejova M, Lim KY, Chase MW, Clarkson JJ, Knapp S, Leitch AR (2008) Evolution of rDNA in Nicotiana allopolyploids: a potential link between rDNA homogenization and epigenetics. Ann Bot 101:815–823

    PubMed  CAS  Google Scholar 

  • Kumashiro T, Oinuma T (1985) Comparison of genetic variability among anther-derived and ovule-derived doubled haploids of tobacco. Jpn J Breed 35:301–310

    Google Scholar 

  • Lammerts WE (1932) Inheritance of monosomics in Nicotiana rustica. Genetics 17:689–696

    PubMed  CAS  Google Scholar 

  • Lanfermeijer FC, Jian G, Ferwerda MA, Dijkhuis J, de Haan P, Yang R, Hille J (2004) The durable resistance gene Tm-2 2 from tomato confers resistance against ToMV in tobacco and preserves its viral specificity. Plant Sci 167:687–692

    CAS  Google Scholar 

  • Lea HW (1963) The transfer of resistance against blue mold (Peronospora tabacina Adam) from Nicotiana debneyi to cultivated tobacco. CORESTA Inf Bull 1963(3):13–15

    Google Scholar 

  • Lee RE (1950) A cytogenetic study of extra chromosomes in Nicotiana langsdorffii and in crosses with N. sanderae. PhD Thesis, Cornell University, Ithaca, NY, USA

    Google Scholar 

  • Legg PD, Mann TG (1961) A study of introgression of N. rustica germplasm into flue-cured varieties of N. tabacum. Tob Sci 5:136–139

    Google Scholar 

  • Legg PD, Smeeton BW (1999) Breeding and genetics. In: David DL, Nielsen MT (eds) Tobacco production, chemistry, and technology. Blackwell Science, Malden, MA, USA, pp 32–48

    Google Scholar 

  • Legg PD, Litton CC, Collins GB (1981) Effects of the Nicotiana debneyi black root rot resistance factor on agronomic and chemical traits in burley tobacco. Theor Appl Genet 60:365–368

    CAS  Google Scholar 

  • Lester RN, Hawkes JG (2001) Solanaceae. In: Hanelt P and Institute of Plant Genetics and Crop Plant Research (eds) Mansfeld’s encyclopedia of agricultural and horticultural crops (Except Ornamentals), vol 4. Springer, Berlin, pp 1790–1856

    Google Scholar 

  • Lewis RS (2005) Transfer of resistance to potato virus Y (PVY) from Nicotiana africana to Nicotiana tabacum: possible influence of tissue culture on the rate of introgression. Theor Appl Genet 110:678–687

    PubMed  CAS  Google Scholar 

  • Lewis RS, Wernsman EA (2001) Efforts to initiate construction of a disease resistance package on a designer chromosome in tobacco. Crop Sci 41:1420–1427

    CAS  Google Scholar 

  • Lewis RS, Milla SR, Levin JS (2005) Molecular and genetic characterization of Nicotiana glutinosa L. chromosome segments in tobacco mosaic virus-resistant tobacco accessions. Crop Sci 45:2355–2362

    CAS  Google Scholar 

  • Lewis RS, Linger LR, Wolff MF, Wersnman EA (2007a) The negative influence of N-mediated TMV resistance on yield in tobacco: linkage drag versus pleiotropy. Theor Appl Genet 115:169–178

    PubMed  CAS  Google Scholar 

  • Lewis RS, Milla SR, Kernodle SP (2007b) Analysis of an introgressed Nicotiana tomentosa genomic region affecting leaf number and correlated traits in Nicotiana tabacum. Theor Appl Genet 114:841–854

    PubMed  CAS  Google Scholar 

  • Li B, Huang W, Bass T (2003) Shoot production per responsive leaf explant increases exponentially with explants organogenic potential in Nicotiana species. Plant Cell Rep 22:231–238

    PubMed  CAS  Google Scholar 

  • Lim KY, Matyasek R, Lichtenstein CP, Leitch AR (2000) Molecular and cytogenetic analyses and phylogenetic studies in the Nicotiana section Tomentosae. Chromosoma 109:245–258

    PubMed  CAS  Google Scholar 

  • Lim KY, Matyasek R, Kovarik A, Leitch AR (2004) Genome evolution in allotretraploid Nicotiana. Biol J Linn Soc 82:599–606

    Google Scholar 

  • Lim KY, Kovarik A, Matyasek R, Chase MW, Clarkson JJ, Grandbastien MA, Leitch AR (2007) Sequence of events leading to near-complete genome turnover in allopolyploid Nicotiana within five million years. New Phytol 175:757–763

    Google Scholar 

  • Lin TY, Kao YY, Lin S, Lin RF, Chen CM, Huang CH, Wang CK, Lin YZ, Chen CC (2001) A genetic linkage map of Nicotiana plumbaginifolia/Nicotiana longiflora based on RFLP and RAPD markers. Theor Appl Genet 103:905–911

    CAS  Google Scholar 

  • Ma JKC, Drake PMW, Christou P (2003) The production of recombinant pharmaceutical proteins in plants. Nat Rev Genet 4:794–805

    PubMed  CAS  Google Scholar 

  • Mallah GS (1943) Inheritance in Nicotiana tabacum. XVI. Structural differences among the chromosomes of a selected group of varieties. Genetics 28:525–532

    PubMed  CAS  Google Scholar 

  • Mann TJ, Weybrew JA (1958) Manifestations of hybrid vigor in crosses between flue-cured varieties of N. tabacum and N. sylvestris. Tob Sci 2:120–125

    Google Scholar 

  • Mann TJ, Jones GL, Matzinger DF (1962) The use of cytoplasmic male sterility in flue-cured tobacco hybrids. Crop Sci 2:407–410

    Google Scholar 

  • Mann TJ, Gerstel DU, Apple JL (1963) The role of interspecific hybridization in tobacco disease control. In: Proceedings of 3rd world tobacco scientific congress, Salisbury

    Google Scholar 

  • Mather K (1949) The genetical theory of continuous variation. In: 9th International congress of genetics, Stockholm, Sweden, 1949, Heriditas suppl, pp 376–401

    Google Scholar 

  • Mather K, Vines A (1952) The inheritance of height and flowering time in a cross of Nicotiana rustica. Quantitative Inheritance, H.M.S.O. London, UK, pp 49–79

    Google Scholar 

  • Matsuoka K, Demura T, Galis I, Horiguchi T, Sasaki M, Tashiro G, Fukuda H (2004) A comprehensive gene expression analysis toward the understanding of growth and differentiation of tobacco BY-2 Cells. Plant Cell Physiol 45:1280–1289

    PubMed  Google Scholar 

  • Mattingly CF, Collins GB (1974) The use of anther-derived haploids in Nicotiana. III. Isolation of nullisomics from monosomic lines. Chromosoma 46:29–36

    Google Scholar 

  • Matzinger DF, Wernsman EA (1967) Genetic diversity and heterosis in Nicotiana. I. Interspecific crosses. Theor Appl Genet 37:188–191

    Google Scholar 

  • Merxmüller H, Buttler KP (1975) Nicotiana in der afrikanischen Namibein pflanzengeographisches and phylogenetisches Rätsel. Mitt Bot München 12:91–104

    Google Scholar 

  • Milla SR, Levin JS, Lewis RS, Rufty RC (2005) RAPD and SCAR markers linked to an introgressed gene conditioning resistance to Peronospora tabacina D.B. Adam. in tobacco. Crop Sci 45:2346–2354

    CAS  Google Scholar 

  • Moav R (1958) Inheritance in Nicotiana tabacum XXIX: relationship of residual-chromosome homology to interspecific gene transfer. Am Nat 92:267–278

    Google Scholar 

  • Moav R (1961) Genetic instability in Nicotiana hybrids. II. Studies on the Ws(pbg) locus of N. plumbaginifolia in N. tabacum nuclei. Genetics 1946:1069–1087

    Google Scholar 

  • Moav R (1962) Inheritance in Nicotiana tabacum XXX: autotriploidy, a possible means of increasing the rate of interspecific gene transfer. Heredity 17:373–379

    Google Scholar 

  • Moav R, Cameron DR (1960) Genetic instability in Nicotiana hybrids. I. The expression of instability in N. tabacum × N. plumbaginifolia. Am J Bot 47:87–93

    Google Scholar 

  • Moon H, Nicholson JS (2007) AFLP and SCAR markers linked to tomato spotted wilt virus resistance in tobacco. Crop Sci 47:1887–1894

    CAS  Google Scholar 

  • Moon HS, Nicholson JS, Lewis RS (2008) Use of transferable Nicotiana tabacum L. microsatellite markers for investigating genetic diversity in the genus Nicotiana. Genome 51:547–559

    PubMed  CAS  Google Scholar 

  • Moore GA, Collins GB (1982) Isolation of nullihaploids from diverse genotypes of Nicotiana tabacum. J Hered 73:192–196

    Google Scholar 

  • Moscone EA, Matzke MA, Matzke AJM (1996) The use of combined FISH/GISH in conjunction with DAPI counterstaining to identify chromosomes containing transgene inserts in amphidiploid tobacco. Chromosoma 105:231–236

    CAS  Google Scholar 

  • Murad L, Lim KY, Christopodulou V, Matyasek R, Lichtenstein CP, Kovarik A, Leitch AR (2002) The origin of tobacco’s T genome is traced to a particular lineage within Nicotiana tomentosiformis (Solanceae). Am J Bot 89:921–928

    PubMed  CAS  Google Scholar 

  • Nagata T, Takebe I (1970) Cell wall regeneration and cell division in isolated tobacco mesophyll protoplasts. Planta 92:301–318

    Google Scholar 

  • Narayan RKJ, Rees H (1974) Nuclear DNA, heterochromatin and phylogeny of Nicotiana amphidiploids. Chromosoma 47:75–83

    Google Scholar 

  • Nikova V, Vladova R, Pundeva R, Shabanov D (1997) Cytoplasmic male sterility in Nicotiana tabacum L. obtained through interspecific hybridization. Euphytica 94:375–378

    Google Scholar 

  • Nishi T, Tajima T, Noguchi S, Ajisaka H, Negishi H (2003) Identification of DNA markers of tobacco linked to bacterial wilt resistance. Theor Appl Genet 106:765–770

    PubMed  CAS  Google Scholar 

  • Nitsch JP, Nitsch C (1969) Haploid plants from pollen grains. Science 163:85–87

    PubMed  CAS  Google Scholar 

  • Niwa M (1965) Radiation induced interspecific transfer of Ws gene from Nicotiana plumbaginifolia to N. tabacum. III. Differential frequencies of the interspecific transfer during gametogenesis. Jpn J Breed 15:64

    Google Scholar 

  • Okamuro JK, Goldberg RB (1985) Tobacco single-copy DNA is highly homologous to sequences present in the genomes of its diploid progenitors. Mol Gen Genet 198:290–298

    CAS  Google Scholar 

  • Olmstead RG, Palmer JD (1991) Chloroplast DNA and systematics of the Solanaceae. In: Hawkes JG, Lester RN, Nee M, Estrada N (eds) Solanaceae III: taxonomy, chemistry, evolution. Royal Botanic Gardens, Kew, London, UK, pp 161–168

    Google Scholar 

  • Olmstead RG, Sweere JA (1994) Combining data in phylogenetic systematics: an empirical approach using three molecular datasets in the Solanaceae. Syst Biol 43:467–481

    Google Scholar 

  • Olmstead RG, Sweere JA, Spangler RE, Palmer JD (1999) Phylogeny and provisional classification of the Solanaceae based on chloroplast DNA. In: Nee M, Lester RN, Hawkes JG (eds) Solanaceae IV. Royal Botanic Gardens, Kew, London, UK, pp 111–137

    Google Scholar 

  • Opperman CH, Lommel SA, Burke M (2007) Sequencing and analysis of the Nicotiana tabacum genome. Rec Adv Tob Sci 33:5–14

    CAS  Google Scholar 

  • Oupadissakoon S, Wernsman EA (1977) Agronomic performance and nature of gene effects in progenitor species-derived genotypes of tobacco. Crop Sci 17:843–847

    Google Scholar 

  • Powledge TM (2001) Tobacco pharming: a quest to turn the killer crop into a treatment for cancer. Sci Am 285:25–26

    PubMed  CAS  Google Scholar 

  • Ramulu KS, Dijkhuis P, Rutgers E, Blaas J, Krens FA, Dons JJM, Colijn-Hooymans CM, Verhoeven HA (1996) Microprotoplast-mediated transfer of single specific chromosomes between sexually incompatible plants. Genome 39:921–933

    PubMed  CAS  Google Scholar 

  • Reed SM (1991) Cytogenetic evolution and aneuploidy in Nicotiana. In: Tsuchiya T, Gupta PK (eds) Chromosome engineering in plants: genetics, breeding, evolution, Part B. Elsevier, Dordrecht, Netherlands, pp 483–505

    Google Scholar 

  • Reed SM, Collins GB (1978) Interspecific hybrids in Nicotiana through in vitro culture of fertilized ovules. J Hered 69:311–315

    Google Scholar 

  • Ren N, Timko MP (2001) AFLP analysis of genetic polymorphism and evolutionary relationships among cultivated and wild Nicotiana species. Genome 44:559–571

    PubMed  CAS  Google Scholar 

  • Riechers DE, Timko MP (1999) Structure and expression of the gene family encoding putrescine N-methyltransferase in Nicotiana tabacum: new clues to the evolutionary origin of cultivated tobacco. Plant Mol Biol 41:387–401

    PubMed  CAS  Google Scholar 

  • Rommens CMT, Salmeron JM, Oldroyd GED, Staskawicz BJ (1995) Intergenic transfer and functional expression of the tomato disease resistance gene Pto. Plant Cell 7:1537–1544

    PubMed  CAS  Google Scholar 

  • Rossi L, Bindler G, Pijnenburg H, Isaac PG, Giraud-Henry I, Mahe M, Orvain C, Gadani F (2001) Potential of molecular marker analysis for variety identification in processed tobacco. Plants Var Seeds 14:89–101

    Google Scholar 

  • Rushton PJ, Bokowiec MT, Laudeman TW, Brannock JF, Chen X, Timko MP (2008) TOBFAC: the database of tobacco transcription factors. BMC Bioinformatics 9:53

    PubMed  Google Scholar 

  • Schweppenhauser MA (1968) Recent advances in breeding tobacco resistant to Meloidogyne javanica. CORESTA Inf Bull 1:9–20

    Google Scholar 

  • Schweppenhauser MA (1975) Rootknot resistance from Nicotiana longiflora. Tob Sci 19:26–29

    Google Scholar 

  • Setchell WA (1921) Aboriginal tobaccos. Am Anthropol 23:397–414

    Google Scholar 

  • Shands HL, Fitzgerald PJ, Eberhart SA (1989) Program for plant germplasm preservation in the United States: the U.S. National Plant Germplasm System. In: Knutson P, Stoner AK (eds) Biotic diversity and germplasm preservation: global imperatives. Kluwer, Dordrecht, Netherlands, pp 97–115

    Google Scholar 

  • Sheen SJ (1972) Isozymic evidence bearing on the origin of Nicotiana tabacum L. Evolution 26:143–154

    Google Scholar 

  • Shinozaki K, Ohme M, Tanaka M, Wagasugi T, Hayashida N, Matsubayashi T, Zaita N, Chunwongse J, Obokata J, Yamaguchi-Shinozaki K, Ohto C, Torazawa K, Meng BY, Sugita M, Deno H, Kamogashira T, Yamada K, Kusuda J, Takaiwa F, Kato A, Tohdoh N, Shimada H, Sugiura M (1986) The complete nucleotide sequence of the tobacco chloroplast genome: its gene organization and exression. EMBO J 5:2043–2049

    PubMed  CAS  Google Scholar 

  • Skoog F, Miller CO (1957) Chemical regulation of growth and organ formation in plant tissues cultured in vitro. Symp Soc Exp Biol 11:118–131

    PubMed  CAS  Google Scholar 

  • Smeeton BW, Ternouth RAF (1992) Sources of resistance to powdery mildew, wildfire, angular leaf spot, and Alternaria. CORESTA Info Bull 1992–3(4):127–135

    Google Scholar 

  • Smith HH (1937) The relation between genes affecting size and color in certain species of Nicotiana. Genetics 22:361–375

    PubMed  CAS  Google Scholar 

  • Smith HH (1952) Fixing transgressive vigor in Nicotiana rustica. In: Gowen J (ed) Heterosis. Iowa State University Press, Ames, IA, USA, pp 161–174

    Google Scholar 

  • Smith HH (1968) Recent cytogenetic studies in the genus Nicotiana. Adv Genet 14:1–54

    Google Scholar 

  • Smith HH (1972) Plant genetic tumors. Progr Exp Tumor Res 15:138–164

    PubMed  CAS  Google Scholar 

  • Smith HH (1979) The genus as a genetic resource. In: Durbin RD (ed) Nicotiana: procedures for experimental use. USDA Technical Bulletin No 1586, pp 1–16

    Google Scholar 

  • Spassova MI, Prins TW, Folkertsma RT, Klein-Lankhorst RM, Hille J, Goldbach RW, Prins M (2001) The tomato gene Sw5 is a member of the coiled coil, nucleotide binding, leucine-rich repeat class of plant resistance genes and confers resistance to TSWV in tobacco. Mol Breed 7:151–161

    CAS  Google Scholar 

  • Spinden HJ (1950) Tobacco is American. New York Public Library, New York, USA

    Google Scholar 

  • Sproule A, Donaldson P, Dijak M, Bevis E, Pandeya R, Keller WA, Gleddie S (1991) Fertile somatic hybrids between transgenic Nicotiana tabacum and transgenic N. debneyi selected by dual antibiotic resistance. Theor Appl Genet 82:450–456

    Google Scholar 

  • Stam P, Zeven C (1981) The theoretical proportion of the donor genome in near-isogenic lines of self-fertilizers bred by backcrossing. Euphytica 30:227–238

    Google Scholar 

  • Stavely JR (1979) Disease resistance. In: Durbin RD (ed) Nicotiana: procedures for experimental use. USDA Technical Bulletin No 1586, pp 87–110

    Google Scholar 

  • Stavely JR, Skoog HA (1976) Transfer of resistance to a virulent strain of Pseudomonas tabaci from Nicotiana rustica to Nicotiana tabacum breeding lines. Proc Am Phytopathol Soc 3:231 (Abst)

    Google Scholar 

  • Stokes GW (1960) Difference in the behavior of the Nicotiana longiflora wildfire resistance locus in tobacco varieties Burley 21 and KY 61. Phytopathology 50:770–772

    Google Scholar 

  • Suen DF, Wang CK, Lin RF, Kao YY, Lee FM, Chen CC (1997) Assignment of DNA markers to Nicotiana sylvestris chromosomes using monosomic alien addition lines. Theor Appl Genet 94:331–337

    CAS  Google Scholar 

  • Sugiyama Y, Watase Y, Nagase N, Makita N, Yagura S, Hirai A, Sugiura M (2005) The complete nucleotide sequence and multipartite organization of the tobacco mitochondrial genome: comparative analysis of mitochondrial genomes in higher plants. Mol Gen Genom 272:603–615

    CAS  Google Scholar 

  • Svab Z, Maliga P (1993) High-frequency plastid transformation in tobacco by selection for a chimeric aadA gene. Proc Natl Acad Sci USA 90:913–917

    PubMed  CAS  Google Scholar 

  • Takebe I, Labib G, Melchers G (1971) Regeneration of whole plants from isolated mesophyll protoplasts of tobacco. Naturwissenschaften 58:318–320

    Google Scholar 

  • Tanaka M, Nakata K (1969) Tobacco plants obtained by anther culture and experiments to get diploid seeds from haploids. Jpn J Genet 44:47–54

    Google Scholar 

  • Tanksley SD, Nelson JC (1996) Advanced backcross QTL analysis: a method for the simultaneous discovery and transfer of valuable QTLs from unadapted germplasm into elite breeding lines. Theor Appl Genet 92:191–203

    Google Scholar 

  • Ternouth RAP, MacKenzie J, Shepherd JA (1986) Introduction of Meloidogyne javanica resistance into flue-cured tobacco in Zimbabwe. CORESTA Information Bulletin, Symposium, Taormina, Sicily, Italy, 26–30 Oct 1986, p 66 (abstr)

    Google Scholar 

  • Ternovsky MF (1945) Methods of breeding tobacco varieties resistant to tobacco mosaic and powdery mildew. The AI Mikoyan pan-Soviet Sci Res Inst Tob Indian Tob Ind Krasnodar 143:126–141

    Google Scholar 

  • Thilmony RL, Chen Z, Bressan RA, Martin GB (1995) Expression of the tomato Pto gene in tobacco enhances resistance to Pseudomonas syringae pv tabaci expressing avrPto. Plant Cell 7:1529–1536

    PubMed  CAS  Google Scholar 

  • Thomas CM, Tang S, Hammond-Kosack K, Jones JDG (2000) Comparison of the hypersensitive response induced by the tomato Cf-4 and Cf-9 genes in Nicotiana spp. Mol Plant Microbe Interact 4:465–469

    Google Scholar 

  • Tilley NM (1948) The bright-tobacco industry 1860–1929. University of North Carolina Press, Chapel Hill, NC, USA

    Google Scholar 

  • Tso TC (1990) Production, physiology, and biochemistry of tobacco plant. Ideals, Beltsville, MA, USA

    Google Scholar 

  • Uchiyama H, Chen K, Wildman SG (1977) Polypeptide composition of fraction I protein as an aid in the study of plant evolution. Stadler Genet Symp 9:83–99

    Google Scholar 

  • Usui H, Takebe I (1969) Division and growth of single mesophyll cells isolated enzymatically from tobacco leaves. Dev Growth Differ 11:143–150

    PubMed  CAS  Google Scholar 

  • Valleau WD (1952) Breeding tobacco for disease resistance. Econ Bot 6:69–102

    Google Scholar 

  • Valleau WD, Stokes GW, Johnson EM (1960) Nine years’ experience with the Nicotiana longiflora factor for resistance to Phytophthora parasitica var. nicotianae in the control of black shank. Tob Sci 4:92–94

    Google Scholar 

  • Vasil V, Hildebrandt AC (1965) Differentiation of tobacco plants from single, isolated cells in microculture. Science 150:889–892

    PubMed  CAS  Google Scholar 

  • Wark DC (1963) Nicotiana species as sources of resistance to blue mold (Peronospora tabacina Adam) for cultivated tobacco. In: Proceedings of 3rd world tobacco science congress, Salisbury, S Rhodesia. Tobacco Research Board, Harare, Zimbabwe, pp 252–259

    Google Scholar 

  • Wark DC (1970) Development of flue-cured tobacco cultivars resistant to a common strain of blue mold. Tob Sci 14:147–150

    Google Scholar 

  • Wernsman EA, Matzinger DF (1966) A breeding procedure for the utilization of heterosis in tobacco-related species hybrids. Crop Sci 6:298–300

    Google Scholar 

  • Wernsman EA, Rufty RC (1987) Tobacco. In: Fehr WR (ed) Principles of cultivar development, vol 2, Crop species. Macmillian, New York, USA, pp 669–698

    Google Scholar 

  • Wernsman EA, Matzinger DF, Mann TJ (1976) Use of progenitor species germplasm for the improvement of a cultivated allotetraploid. Crop Sci 16:800–803

    CAS  Google Scholar 

  • White PR (1939) Potentially unlimited growth of excised plant callus in an artificial nutrient. Am J Bot 26:59–64

    Google Scholar 

  • Whitham S, Dinesh-Kumar SP, Choi D, Hehl R, Corr C, Baker B (1994) The product of the tobacco mosaic virus resistance gene N: similarity to Toll and the Interleukin-1 receptor. Cell 78:1101–1115

    PubMed  CAS  Google Scholar 

  • Wikstrom N, Savolainen V, Chase MW (2001) Evolution of the angiosperms: calibrating the family tree. Proc R Soc Lond Ser B 268:2211–2220

    CAS  Google Scholar 

  • Woodend JJ, Mudzengerere E (1992) Inheritance of resistance to wildfire and angular leaf spot derived from Nicotiana rustica var. Brasilea. Euphytica 64:149–156

    Google Scholar 

  • Yi Y-H, Rufty RC (1998) RAPD markers elucidate the origin of the root-knot nematode resistance gene (Rk) in tobacco. Tob Sci 42:58–63

    Google Scholar 

  • Yi Y-H, Rufty RC, Wernsman EA (1998a) Identification of RAPD markers linked the wildfire resistance gene of tobacco using bulked segregant analysis. Tob Sci 42:52–57

    Google Scholar 

  • Yi Y-H, Rufty RC, Wernsman EA, Conkling MC (1998b) Mapping the root-knot nematode resistance gene (Rk) in tobacco with RAPD markers. Plant Dis 82:1319–1322

    CAS  Google Scholar 

  • Young ND, Tanksley SD (1989) RFLP analysis of the size of chromosomal segments retained around the Tm-2 locus during backcross breeding. Theor Appl Genet 77:353–359

    CAS  Google Scholar 

  • Yu Y-L, Lin T-Y (1997) Construction of phylogenetic tree for Nicotiana species based on RAPD markers. J Plant Res 110:187–193

    CAS  Google Scholar 

  • Yukawa M, Tsudzuki T, Sugiura M (2006) The chloroplast genome of Nicotiana sylvestris and Nicotiana tomentosiformis: complete sequencing confirms that the Nicotiana sylvestris progenitor is the maternal genome donor of Nicotiana tabacum. Mol Gen Genomics 275:367–373

    CAS  Google Scholar 

  • Zaitlin D, Mundell R (2006) Nicotiana hybrids and plant varieties for use in production of pharmaceuticals. US Patent Appl 10060236433

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramsey S. Lewis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lewis, R.S. (2011). Nicotiana. In: Kole, C. (eds) Wild Crop Relatives: Genomic and Breeding Resources. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21201-7_10

Download citation

Publish with us

Policies and ethics