Skip to main content

Space and Ground-Based Infrastructures

  • Chapter
  • First Online:
Laboratory Science with Space Data
  • 806 Accesses

Abstract

This chapter deals first with the main characteristics of the space environment, outside and inside a spacecraft. Then the space and space-related (ground-based) infrastructures are described. The most important infrastructure is the International Space Station, which holds many European facilities (for instance the European Columbus Laboratory). Some of them, such as the Columbus External Payload Facility, are located outside the ISS to benefit from external space conditions. There is only one other example of orbital platforms, the Russian Foton/Bion Recoverable Orbital Capsule. In contrast, non-orbital weightless research platforms, although limited in experimental time, are more numerous: sounding rockets, parabolic flight aircraft, drop towers and high-altitude balloons. In addition to these facilities, there are a number of ground-based facilities and space simulators, for both life sciences (for instance: bed rest, clinostats) and physical sciences (for instance: magnetic compensation of gravity). Hypergravity can also be provided by human and non-human centrifuges.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aimar, C., Bautz, A., Durand, D., et al.: Microgravity and hypergravity effects on fertilization processes in the salamander Pleurodeles waltl. Biol. Reprod. 63, 551–558 (2000)

    Article  Google Scholar 

  2. Akhouayri, O., Lafage-Proust, M.H., Rattner, A., et al.: Effects of static or dynamic mechanical stresses on osteoblast phenotype expression on three-dimensional contractile collagen gels. J. Cell. Biochem. 76, 217–230 (1999)

    Article  Google Scholar 

  3. Columbus Payloads Accommodation Handbook. Ref # COL-RIBRE-MA-O007-00. Astrium GmbH, Bremen, Germany (2001)

    Google Scholar 

  4. Columbus External Payloads Interface Requirements Document. ref # COL–RIBRE–SPE–0165. Astrium Gmbh, Bremen, Germany (2002)

    Google Scholar 

  5. Beaugnon, E., Tournier, R.: Levitation of water and organic substances in high static magnetic fields. J. Phys. III Fr. 1, 1423–1428 (1991)

    Article  Google Scholar 

  6. Bellossi, F., Clément, G., Cohen, B., et al.: EDEN: a payload dedicated to neurovestibular research for Neurolab. Acta Astronaut. 42(1–8), 59–67 (1998)

    Article  Google Scholar 

  7. Berry, M.V., Geim, A.K.: Of flying frogs and levitrons. Eur. J. Phys. 18, 307–313 (1997)

    Article  MathSciNet  Google Scholar 

  8. Bles, W.: Desdemona: Advanced Disorientation Trainer. HSIAC publication Gateway, SD-edition Fall (2001)

    Google Scholar 

  9. Bles, W., van Raaij, J.L.: The tilting room and the spacelab D1 mission. Adv. ORL 42, 13–17 (1988)

    Google Scholar 

  10. Bles, W., Bos, J.E., de Graaf, B., et al.: Motion sickness: only one provocative conflict? Brain Res. Bull. 47(5), 481–549 (1998)

    Article  Google Scholar 

  11. Borst, A.G., van Loon, J.J.W.A.: Technology and developments for the random positioning machine. RPM. Microgravity Sci. Technol. 21(4), 287–292 (2009)

    Article  Google Scholar 

  12. Boyde, C.A., Quarto, R., et al.: Osteoconduction in large microporous hydroxyapatite ceramic implants: evidence for a complementary integration and disintegration mechanism. Bone 24, 579–589 (1999)

    Article  Google Scholar 

  13. Briegleb, W.: Some quantitative aspects of the fast-rotating clinostat as a research tool. ASGSB Bull. 5, 23–30 (1992)

    Google Scholar 

  14. Ceglia, E., Carey, W., ESA.: UIC-ESA-UM-001 European Users Guide to Low Gravity Platforms (Rev 2.0). 3. Drop Towers (2005)

    Google Scholar 

  15. Ceglia, E., Carey, W., ESA.: UIC-ESA-UM-001 European Users Guide to Low Gravity Platforms (Rev 2.0). 4. Parabolic Flights (2005)

    Google Scholar 

  16. Ceglia, E., Carey, W., ESA.: UIC-ESA-UM-001 European Users Guide to Low Gravity Platforms (Rev 2.0). 5. Sounding Rockets (2005)

    Google Scholar 

  17. Ceglia, E., Carey, W., ESA.: UIC-ESA-UM-001 European Users Guide to Low Gravity Platforms (Rev 2.0). 6. Foton Retrievable Capsules (2005)

    Google Scholar 

  18. Ceglia, E., Carey, W., ESA.: UIC-ESA-UM-001 European Users Guide to Low Gravity Platforms (Rev 2.0). 7.3 Physical Environment (2005)

    Google Scholar 

  19. Chaerle, L., Van der Straeten, D.: Imaging techniques and the early detection of plant stress. Trends Plant Sci. 5, 495–501 (2000). S.C.I.: 9.350

    Article  Google Scholar 

  20. Chaerle, L., Van Caeneghem, W., Messens, E., et al.: Presymptomatic visualisation of plant-virus interactions by thermography. Nat. Biotechnol. 17, 813–816 (1999). S.C.I.: 10.117

    Article  Google Scholar 

  21. Chaerle, L., De Boever, F., van Montagu, M., et al.: Thermographic visualisation of cell death phenomena in tobacco and Arabidopsis. Plant Cell Environ. 24, 15–26 (2001). S.C.I.: 3.579

    Article  Google Scholar 

  22. Chesson, R.: The ISS Operations & Exploitation Program. ESA Bulletin. 110, 61–68 (2002)

    Google Scholar 

  23. Clement, G., Bukley, A.: Artificial Gravity. Springer, New York (2007)

    Book  Google Scholar 

  24. Clément, G., Moore, S., Raphan, T., et al.: Perception of tilt (somatogravic illusion) in response to sustained linear acceleration during space flight. Exp. Brain Res. 138(4), 410–418 (2001)

    Article  Google Scholar 

  25. de Graaf, B., de Roo, A.J.: Effects of long duration centrifugation on head movements and a psychomotor task. J. Vestib. Res. 6(1), 23–29 (1996)

    Article  Google Scholar 

  26. Dournon, C., Durand, D.D., Tankosic, C., et al.: Further larval development, metamorphosis and reproduction of Pleurodeles waltl (urodele amphibian) born and developed up to hatching stage in microgravity. Develop. Growth & Differ 43, 315–326 (2001)

    Google Scholar 

  27. Drummer, C., Gerzer, R., Baisch, F., Heer, M.: Body fluid regulation in μ- gravity differs from Earth: an overview. Pflugers Arch. 441(Suppl), R66–R72 (2000)

    Google Scholar 

  28. Drummer, C., Heer, M., Joosten, M., et al.: Regulation and distribution of body fluid during a 6-day head-down tilt study in a randomized cross-over design. J. Gravit. Physiol. 7, P-187–P-188 (2000)

    Google Scholar 

  29. Durand, D., Tankosic, C., Chaput, D., et al.: Feeding and rearing techniques used for larvae of Pleurodeles waltl (urodele amphibian) onboard the MIR space station. Scand. J. Lab. Anim. Sci. 27, 193–201 (2000)

    Google Scholar 

  30. Ceglia, E. Ch.9: European Drawer Rack. In: Carey E.W. (ed) European Users Guide to Low Gravity Platforms. Issue 2 Rev 0. ESA Ref: UIC-ESA-UM-001. ESA, Noordwijk, The Netherlands

    Google Scholar 

  31. Ceglia, E. Ch.9: Biolab – Biological laboratory in Columbus. In: Carey E.W. (ed) European Users Guide to Low Gravity Platforms. Issue 2 Rev 0. ESA Ref: UIC-ESA-UM-001. ESA, Noordwijk, The Netherlands

    Google Scholar 

  32. Ceglia, E. Ch.9: Fluid Science Laboratory (FSL). In: Carey E.W. (ed) European Users Guide to Low Gravity Platforms. Issue 2 Rev 0. ESA Ref: UIC-ESA-UM-001. ESA, Noordwijk, The Netherlands

    Google Scholar 

  33. Ceglia, E. Ch.9: European Physiology Modules (EPM). In: Carey E.W. (ed) European Users Guide to Low Gravity Platforms. Issue 2 Rev 0. ESA Ref: UIC-ESA-UM-001. ESA, Noordwijk, The Netherlands

    Google Scholar 

  34. Ceglia, E. Ch.9: Protein Crystallisation Diagnostics Facility. In: Carey E.W. (ed) European Users Guide to Low Gravity Platforms. Issue 2 Rev 0. ESA Ref: UIC-ESA-UM-001. ESA, Noordwijk, The Netherlands

    Google Scholar 

  35. Ceglia, E. Ch.9: SOLAR. In: Carey E.W. (ed) European Users Guide to Low Gravity Platforms. Issue 2 Rev 0. ESA Ref: UIC-ESA-UM-001. ESA, Noordwijk, The Netherlands

    Google Scholar 

  36. Ceglia, E. Ch.9: Materials Science Laboratory (MSL). In: Carey E.W. (ed) European Users Guide to Low Gravity Platforms. Issue 2 Rev 0. ESA Ref: UIC-ESA-UM-001. ESA, Noordwijk, The Netherlands

    Google Scholar 

  37. Ceglia, E. Ch.9: Microgravity Science Glovebox (MSG). In: Carey E.W. (ed) European Users Guide to Low Gravity Platforms. Issue 2 Rev 0. ESA Ref: UIC-ESA-UM-001. ESA, Noordwijk, The Netherlands

    Google Scholar 

  38. Ceglia, E. Ch.9: Matroshka – Space Radiation Experiment. In: Carey E.W. (ed) European Users Guide to Low Gravity Platforms. Issue 2 Rev 0. ESA Ref: UIC-ESA-UM-001. ESA, Noordwijk, The Netherlands

    Google Scholar 

  39. Ceglia, E. Ch.9: Minus Eighty Laboratory Freezer for ISS. In: Carey E.W. (ed) European Users Guide to Low Gravity Platforms. Issue 2 Rev 0. ESA Ref: UIC-ESA-UM-001. ESA, Noordwijk, The Netherlands

    Google Scholar 

  40. Ceglia, E. Ch.9: European Technology Exposure Facility. In: Carey E.W. (ed) European Users Guide to Low Gravity Platforms. Issue 2 Rev 0. ESA Ref: UIC-ESA-UM-001. ESA, Noordwijk, The Netherlands

    Google Scholar 

  41. Ceglia, E. Ch.9: Atomic Clock Ensemble in Space (ACES). In: Carey E.W. (ed) European Users Guide to Low Gravity Platforms. Issue 2 Rev 0. ESA Ref: UIC-ESA-UM-001. ESA, Noordwijk, The Netherlands

    Google Scholar 

  42. Ceglia, E. Ch.9: Pulmonary Function System (PFS). In: Carey E.W. (ed) European Users Guide to Low Gravity Platforms. Issue 2 Rev 0. ESA Ref: UIC-ESA-UM-001. ESA, Noordwijk, The Netherlands

    Google Scholar 

  43. Ceglia, E. Ch.9: Flywheel Exercise Device (FWED). In: Carey E.W. (ed) European Users Guide to Low Gravity Platforms. Issue 2 Rev 0. ESA Ref: UIC-ESA-UM-001. ESA, Noordwijk, The Netherlands

    Google Scholar 

  44. Ceglia, E. Ch.9: European Modular Cultivation System. In: Carey E.W. (ed) European Users Guide to Low Gravity Platforms. Issue 2 Rev 0. ESA Ref: UIC-ESA-UM-001. ESA, Noordwijk, The Netherlands

    Google Scholar 

  45. Ceglia, E. Ch.9: MARES. In: Carey E.W. (ed) European Users Guide to Low Gravity Platforms. Issue 2 Rev 0. ESA Ref: UIC-ESA-UM-001. ESA, Noordwijk, The Netherlands

    Google Scholar 

  46. Farinha Mendes, J., Collares-Pereira, M., Martinez, D., et al.: Testing results of a second stage concentrator designed for the solar furnace of plataforma solar dAlmería. J. Phys. IV 9, Pr3-569–Pr3-574 (1999)

    Google Scholar 

  47. Fernandez, BJ., Lopez, V., Vázquez, AJ., et al.: Cladding of Ni superalloy powders on AISI 4140 steel with concentrated solar energy. Solar Energy Materials and Solar Cells. 53, 153–161 (1998)

    Google Scholar 

  48. Groen, E.L., Bos, J.E., de Graaf, J.E., et al.: Otolith signal processing and motion sickness. Ann. NY Acad. Sci. 871, 406–409 (1999)

    Article  ADS  Google Scholar 

  49. Guerra Rosa, L., Cruz Fernandes, J., Amaral, P.M., et al.: Photochemically promoted formation of higher carbide of molybdenum through reaction between metallic molybdenum powders and graphite powders in a solar furnace. Int. J. Refract. Met. Hard Mater. 17, 351–356 (1999)

    Article  Google Scholar 

  50. Heer, M.: Influence of dietary increased NaCl intake on body fluid and electrolyte metabolism. Thesis/Dissertation, University of Bonn, Institute of Nutrition Science, Bonn, Germany (1996)

    Google Scholar 

  51. Heer, M., Drummer, C., Baisch, F., et al.: Effects of head-down tilt and saline loading on body weight, fluid, and electrolyte homeostasis in man. Acta Physiol. Scand. Suppl. 604, 13–22 (1992)

    Google Scholar 

  52. Hemmersbach-Krause, R., Briegleb, W., Häder, D.P., et al.: Orientation of Paramecium under the conditions of weightlessness. J. Euk. Microbiol. 40, 439–446 (1993)

    Article  Google Scholar 

  53. Hensel, W., Sievers, A.: Effects of prolonged omnilateral gravistimulation on the ultrastructure of statocytes and on the graviresponse of roots. Planta 150, 338–346 (1980)

    Article  Google Scholar 

  54. Hoson, T., Kamisaka, S., Masuda, Y., et al.: Changes in plant growth process under microgravity conditions simulated by a three-dimensional clinostat. Bot. Mag. 105, 53–70 (1992)

    Article  Google Scholar 

  55. ISS Intergovernmental Agreement: Agreement Among The Government Of Canada, Governments Of Member States Of The European Space Agency, The Government Of Japan, The Government Of The Russian Federation and The Government Of The United States Of America Concerning Cooperation On The Civil International Space Station (1998)

    Google Scholar 

  56. Kohlbrenner, H.S., Laib, A., Rüegsegger, P.: A 3D microtomographic system with stacked fan-beam geometry. Nucl. Instrum. Methods Phys. Res. A443, 531–539 (2000)

    ADS  Google Scholar 

  57. Kon, E., Muraglia, A., Corsi, A., et al.: Autologous bone marrow stromal cells loaded onto porous hydroxyapatite ceramic accelerate bone repair in critical size defects of sheep long bones. J. Biomed. Mater. Res. 49, 328–337 (2000)

    Article  Google Scholar 

  58. Krige, J., Russo, A.: A History of the European Space Agency 1958–1987, vol. I + II. R.A. Harris (ed.), ESA SP-1235, ESA Publications Division, Noordwijk, The Netherlands (2000)

    Google Scholar 

  59. Laib, A., Barou, O., Vico, L., Lafarge-Proust, M.H., et al.: 3D micro-computed tomograhy of trabecular and cortical bone architecture with application to a rat model of immobilization osteoporosis. Med. Biol. Eng. Comput. 38(3), 326–332 (2000)

    Article  Google Scholar 

  60. Lura, F., Troppenz, E., Lötzke, HG.: Creation, calculation and testing of the thermal control system for the CASSINI cosmic dust analyser. In: Proceedings of the 26th International Conference on Environmental Systems, Monterey (1996, July)

    Google Scholar 

  61. Lura, F., Hagelschuer, D., Abraimov, V.V.: KOBE – The simultaneous simulation of space environment effects for the investigation of spaceborne material properties. In: Proceedings of the 3rd International Symposium on Environmental Testing for Space Programmes. ESA -ESTEC, Noordwijk (1997, June)

    Google Scholar 

  62. Marcacci, M., Kon, E., Zaffagnini, S., et al.: Reconstruction of extensive long bone defects in sheep using porous hydroxyapatite sponges. Calcif. Tissue Int. 64, 83–90 (1999)

    Article  Google Scholar 

  63. Martınez, D., Rodriguez, J.: Surface treatment by concentrated solar energy: The solar furnace at the “Plataforma Solar de Almerıa”. In: Surface modification technologies XI proceedings of the Tenth International Conference on Surface Modification Technologies, Paris, France, September 8–10, 1997. Editors (proceedings) T.S. Sudarshan, M. Jeanding, K.A. Khor. Published 1998 by Institute of Materials in London, UK. 441–447 (1998)

    Google Scholar 

  64. Minster, O., Innocenti, L., Mesland, D.: Looking at Science on Board Eureca, ESA BR – 80, pp. 3–6. ESA Publications Division, ESTEC, Noordwijk (1993)

    Google Scholar 

  65. Mitchell, R.J.: The eleventh annual R.M. Hardy Keynote address, 1997: centrifugation in geoenvironmental practice and education. Can. Geotech. J. 35, 630–640 (1997)

    Article  Google Scholar 

  66. Moore, S.T., Clément, G., Raphan, T., et al.: The human response to artificial gravity in a weightlessness environment: Results from the Neurolab centrifugation experiments. In: El-Genk, M.S. (ed.) Space Technology and Applications International Forum 2000, pp. 206–211. American Institute of Physics, College Park, MD (2000)

    Google Scholar 

  67. Moore, S., Clément, G., Raphan, T., et al.: Ocular counterrolling reflex (OCR) induced by centrifugation during orbital space flight. Exp. Brain Res. 137, 323–335 (2001)

    Article  Google Scholar 

  68. Muller, H.J.: Approximation to a gravity-free situation for the human organism achievable at moderate expense. Science 128, 772 (1959)

    Article  ADS  Google Scholar 

  69. NASA Johnson Space Center: International Space Station Familiarization. TD9702A (1998)

    Google Scholar 

  70. Nooij, S.: Vestibular adaptation to an altered gravitational environment, Consequences for spatial orientation. 978-90-9022982-9 (2008)

    Google Scholar 

  71. Norsk, P., Christensen, N.J., Bie, P., et al.: Unexpected renal responses in space [letter] [In Process Citation]. Lancet 356, 1577–1578 (2000)

    Article  Google Scholar 

  72. Oukda, M., Francois, M., Membre, H., et al.: Crystallographic and chemical composition of otoconia in the salamander Pleurodeles waltl. Hear. Res. 132, 85–93 (1999). Rank 2/29, Otorhinolaryngology, IF 1,598 – CHL 6,9

    Article  Google Scholar 

  73. Regel, L.L., Wilcox, W.R. (eds.): Materials Processing in High Gravity. Plenum Press, New York (1994)

    Google Scholar 

  74. Rohdin, M., Linnarsson, D.: Differential changes of lung diffusing capacity and tissue volume in hypergravity. J. Appl. Physiol. 93, 935 (2002)

    Google Scholar 

  75. Schwarzenberg, M., Pippia, P., Meloni, M.A., et al.: Signal transduction in T lymphocytes – a comparison of the data from space, the free fall machine and the random positioning machine. Adv. Space Res. 24, 793–800 (1999)

    Article  ADS  Google Scholar 

  76. Shohoji, N., Guerra Rosa, L., Cruz Fernandes, J., et al.: Catalytic acceleration of graphitisation of amorphous carbon during synthesis of tungsten carbide from tungsten and excess amorphous carbon in a solar furnace. Mater. Chem. Phys. 58, 172–176 (1999)

    Article  Google Scholar 

  77. Van Der Straeten, D., Chaerle, L., Sharkov, G., et al.: Salicylic acid enhances the activity of the alternative pathway of respiration in tobacco leaves and induces thermogenicity. Planta 196, 412–419 (1995). S.C.I.: 2.977

    Article  Google Scholar 

  78. van Loon, J.J.W.A.: Some history and use of the random positioning machine, RPM, in gravity related research. Adv. Space Res. 39, 1161–1165 (2007)

    Article  ADS  Google Scholar 

  79. van Loon, J.J.W.A., Tanck, E., van Nieuwenhoven, F., et al.: A brief overview of animal hypergravity studies. J. Grav. Physiol. 12(1), 5–10 (2005)

    Google Scholar 

  80. van Loon, JJWA., Krause, J., Cunha, H., et al: The large diameter centrifuge, LDC, for life and physical sciences and technology. In: Proceedings of the ‘Life in Space for Life on Earth Symposium’, Angers, 22–27 June 2008. ESA SP-663 (2008)

    Google Scholar 

  81. Wunenburger, R., Chatain, D., Garrabos, Y., et al.: Magnetic compensation of gravity forces in (p−) hydrogen near its critical point; application to weightlessness conditions. Phys. Rev. E 62, 469–476 (2000)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Weems, J., Zell, M. (2011). Space and Ground-Based Infrastructures. In: Beysens, D., Carotenuto, L., van Loon, J., Zell, M. (eds) Laboratory Science with Space Data. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21144-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21144-7_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21143-0

  • Online ISBN: 978-3-642-21144-7

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics