Optimality Conditions and Image Space Analysis for Vector Optimization Problems

  • Giandomenico Mastroeni
Part of the Vector Optimization book series (VECTOROPT, volume 1)


At the beginning of last century, W. Pareto introduced, in the field of Economics the idea of considering the simultaneous extremization of more that one objective function, namely a Vector Optimization Problem (VOP). This new concept has much influenced the Theory of Economics and the mathematical theory of extrema, but, in the first half of the century, only a few applications has been developed. After the second world war, in some fields of Engineering [53] and in the context of Industrial Systems, Logistics and Management Science, there has been an increasing request of mathematical models for optimizing situations with concurrent objectives, and nowadays, besides the above mentioned applications, VOP also arises in the field of statistics, approximation theory and cooperative game theory [18, 33].


  1. 1.
    Abadie, J.: On the Kuhn–Tucker theorem. In: Nonlinear programming, pp. 19–36. North–Holland, Amsterdam (1967)Google Scholar
  2. 2.
    Ansari, Q.H., Lee, G.M.: Nonsmooth vector optimization problems and Minty vector variational inequalities. J. Optim. Theory Appl. 145 (1), 1–16 (2010)CrossRefGoogle Scholar
  3. 3.
    Ansari, Q.H., Yao, J.C.: On nondifferentiable and nonconvex vector optimization problems. J. Optim. Theory Appl. 106 (3), 475–488 (2000)CrossRefGoogle Scholar
  4. 4.
    Baiocchi, C., Capelo, A.: Variational and Quasivariational Inequalities, Applications to Free Boundary Problems. John Wiley and Sons, New York (1984)Google Scholar
  5. 5.
    Bao, T.Q., Mordukhovich, B.S.: Relative pareto minimizers for multiobjective problems: existence and optimality conditions, Math. Prog. 122 (2), Ser. A, 301–347 (2010).Google Scholar
  6. 6.
    Benson, H.P.: An improved definition of proper efficiency for vector maximizations with respect to cones. J. Math. Anal. Appl. 71, 232–241 (1979)CrossRefGoogle Scholar
  7. 7.
    Bigi, G.: Saddlepoint optimality criteria in vector optimization. In: Optimization in Economics, Finance and Industry, pp. 85–102. Datanova, Milano (2002)Google Scholar
  8. 8.
    Bot, R.I., Grad, S.M., Wanka, G.: Duality in vector optimization. Springer-Verlag, Berlin, Heidelberg (2009)CrossRefGoogle Scholar
  9. 9.
    Breckner, W.W., Kassay, G.: A systematization of convexity concepts for sets and functions. J. Convex Anal. 4, 109–127 (1997)Google Scholar
  10. 10.
    Chen, G. Y., Huang, X. X., Yang, X. Q.: Vector Optimization, Set-valued and Variational Analysis. Lecture Notes in Economics and Mathematical Systems, 541. Springer-Verlag, Berlin (2005)Google Scholar
  11. 11.
    Chen, G.Y., Yang, X.Q.: The vector complementary problem and its equivalences with vector minimal element in ordered spaces. J. Math. Anal. Appl. 153 (1), 136–158 (1990)CrossRefGoogle Scholar
  12. 12.
    Clarke, F.H.: Optimization and Nonsmooth Analysis. John Wiley, New York (1984)Google Scholar
  13. 13.
    Craven, B.D.: Nonsmooth multiobjective programming. Numer. Funct. Anal. Optim. 10, 49–64 (1989)CrossRefGoogle Scholar
  14. 14.
    Crespi, G. P., Ginchev, I., Rocca, M.: Minty vector variational inequality, efficiency and proper efficiency. (English summary) Vietnam J. Math. 32 (1), 95–107 (2004)Google Scholar
  15. 15.
    Crespi, G.P., Ginchev, I., Rocca, M.: Some remarks on the Minty vector variational principle. J. Math. Anal. Appl. 345, 165–175 (2008)CrossRefGoogle Scholar
  16. 16.
    Demyanov, V.F., Rubinov, A.M.: On quasidifferentiable functionals. Soviet Math. Doklady 21, 14–17 (1980)Google Scholar
  17. 17.
    Demyanov, V.F.: Smoothness of nonsmooth functions. In: Clarke, F.H., Demyanov V.F., Giannessi, F. (eds.), Nonsmooth Optimization and Related Topics, pp. 79–88. Plenum Press, New York (1989)Google Scholar
  18. 18.
    Ehrgott, M.: Multicriteria Optimization. Springer, Berlin, Heidelberg (2005)Google Scholar
  19. 19.
    Fan, K.: Minimax theorems. Proc. Nat. Acad. Sci. USA 39, 42–47 (1953)CrossRefGoogle Scholar
  20. 20.
    Flores-Bazan, F., Hadjisavvas, N., Vera, C.: An optimal alternative theorem and applications to mathematical programming. J. Global Optim. 37, 229–243 (2007)CrossRefGoogle Scholar
  21. 21.
    Gasimov, N.: Characterization of the Benson proper efficiency and scalarization in nonconvex vector optimization. In: Multiple Criteria Decision Making in the New Millennium (Ankara, 2000), Lecture Notes in Economics and Mathematical Systems 507, pp. 189-198. Springer Verlag, Berlin (2001)Google Scholar
  22. 22.
    Giannessi, F.: Theorems of alternative, quadratic programs and complementary problems. In: Cottle, R.W., Giannessi, F., Lions, J.L. (eds.), Variational Inequality and Complementary Problems, pp. 151–186. Wiley, New York (1980)Google Scholar
  23. 23.
    Giannessi, F.: Theorems of the alternative and optimality conditions. J. Optim. Theory Appl. 42, 331–365 (1984)CrossRefGoogle Scholar
  24. 24.
    Giannessi, F.: Semidifferentiable functions and necessary optimality conditions. J. Optim. Theory Appl. 60, 191–241 (1989)CrossRefGoogle Scholar
  25. 25.
    Giannessi, F.: On Minty variational principle. In: New Trends in Mathematical Programming, pp. 93–99. Kluwer Academic Publishers (1998)Google Scholar
  26. 26.
    Giannessi, F. (ed.): Vector Variational Inequalities and Vector Equilibria. Nonconvex Optimization and its Applications Series 38. Kluwer Academic Publishers, Dordrecht, Boston, London (2000)Google Scholar
  27. 27.
    Giannessi, F.: Constrained Optimization and Image Space Analysis. Springer, London (2005)Google Scholar
  28. 28.
    Giannessi, F., Mastroeni, G., Pellegrini, L.: On the theory of vector optimization and variational inequalities. Image space analysis and separation. In [26], pp. 153–215 (2000)Google Scholar
  29. 29.
    Guu, S.M., Huang, N.J., Li, J.: Scalarization approaches for set-valued vector optimization problems with applications. J. Math. Anal. Appl. 356, No. 2, 564–576 (2009)Google Scholar
  30. 30.
    Harker, P. T., Pang, J.S.: Finite-dimensional variational inequality and nonlinear complementarity problems: a survey of theory, algorithms and applications. Math. Prog. 48 (2) (Ser. B), 161–220 (1990)Google Scholar
  31. 31.
    Ioffe, A.D., Tihomirov, V.M.: Theory of Extremal Problems. North-Holland Publishing Company, Amsterdam, New York, Oxford (1979)Google Scholar
  32. 32.
    Jahn, J.: Scalarization in vector optimization. Math. Prog. 29, 203–218 (1984)Google Scholar
  33. 33.
    Jahn, J.: Vector optimization - Theory, Applications, and Extensions. Springer Verlag, Berlin (2004)Google Scholar
  34. 34.
    Jeyakumar, V., Oettli, W., Natividad, M.: A solvability theorem for a class of quasiconvex mappings with applications to optimization. J. Math. Anal. Appl. 179, 537–546 (1993)CrossRefGoogle Scholar
  35. 35.
    Jeyakumar, V.: Convexlike alternative theorems and mathematical programming. Optimization 16, 643–652 (1985)CrossRefGoogle Scholar
  36. 36.
    Jiménez, B., Novo, V.: First and second order sufficient conditions for strict minimality in nonsmooth vector optimization. J. Math. Anal. Appl. 284, 496–510 (2003)CrossRefGoogle Scholar
  37. 37.
    Kasimbely, R.: A cone separation theorem and scalarization. SIAM J. Optim. 20 (3), 1591–1619 (2010)CrossRefGoogle Scholar
  38. 38.
    Kinderlehrer, D., Stampacchia, G.: An Introduction to Variational Inequalities and their Applications. Academic Press, New York (1980)Google Scholar
  39. 39.
    Konnov, I. V.: A scalarization approach for vector variational inequalities. J. Global Optim. 32 (4), 517–527 (2005)CrossRefGoogle Scholar
  40. 40.
    Lee, G.M., Kim, D. S., Lee, B. S., Yen, N. D.: Vector variational inequality as a tool for studying vector optimization problems. Nonlinear Anal. 34 (5), 745–765 (1998)CrossRefGoogle Scholar
  41. 41.
    Lee, G.M., Lee, K.B.: Vector variational inequalities for nondifferentiable convex vector optimization problems. J. Global Optim. 32 (4), 597–612 (2005)CrossRefGoogle Scholar
  42. 42.
    Luc, D.T.: On duality theory in multiobjective programming. J. Optim. Theory Appl. 43 (4), 557–582 (1984)CrossRefGoogle Scholar
  43. 43.
    Luc, D.T.: Theory of Vector Optimization. Lecture Notes in Economics and Mathematical Systems 319, Springer Verlag, Berlin (1989)Google Scholar
  44. 44.
    Luo, H.Z, Mastroeni, G., Wu, H.X.: Separation approach for augmented Lagrangians in constrained nonconvex optimitazion. J. Optim. Theory Appl. 144, 275–290 (2010)Google Scholar
  45. 45.
    Mordukhovich, B.S.: Variational Analysis and Generalized Differentiation, II: Applications. Grundlehren Series (Fundamental Principles of Mathematical Sciences) 330. Springer, Berlin (2006)Google Scholar
  46. 46.
    Pappalardo, M.: Some calculus rules for semidifferentiable functions and related topics. In: Giannessi, F. (ed.) Nonsmooth Optimization - Methods and Applications, pp. 281-294. Gordon & Breach (1992)Google Scholar
  47. 47.
    Pshenichnyi, B.N.: Necessary Conditions for an Extremum. Marcel Dekker, New York (1971)Google Scholar
  48. 48.
    Robinson, S.M.: First order conditions for general nonlinear optimization. SIAM J. Appl. Math. 30 (4), 597–607 (1976)CrossRefGoogle Scholar
  49. 49.
    Robinson, S.M.: Local structure of feasible sets in nonlinear programming, part 3: stability and sensitivity. Math. Prog. Study 30, 45–66 (1987)Google Scholar
  50. 50.
    Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton, New Jersey (1970)Google Scholar
  51. 51.
    Rockafellar, R.T.: Generalized directional derivatives and subgradients of nonconvex functions. Canadian J. Math. 32, 157–180 (1980)CrossRefGoogle Scholar
  52. 52.
    Song, W.: Duality for vector optimization of set valued functions. J. Math. Anal. Appl. Math. 201, 212–225 (1996)CrossRefGoogle Scholar
  53. 53.
    Statnikov, R.B.: Multicriteria Design - Optimization and Identification. Kluwer Academic Publisher, Dordrecht (1999)Google Scholar
  54. 54.
    Tan, K.K., Yu, J., Yuan G.X.Z.: Existence theorems for saddle points of vector-valued maps. J. Optim. Theory Appl. 89, 731–747 (1996)CrossRefGoogle Scholar
  55. 55.
    Tanaka, T.: Generalized quasiconvexities, cone saddle points, and minimax theorem for vector valued functions. J. Optim. Theory Appl. 81, 355–377 (1994)CrossRefGoogle Scholar
  56. 56.
    Tanino, T., Sawaragi, Y.: Duality theory in multiobjective programming. J. Optim. Theory Appl. 27 (4), 509–529 (1979)CrossRefGoogle Scholar
  57. 57.
    Tardella, F.: On the Image of a Constrained Extremum Problem and Some Applications to the Existence of a Minimum. J. Optim. Theory Appl. 60, 93–104 (1989)CrossRefGoogle Scholar
  58. 58.
    Wang, S., Li, Z.: Scalarization and Lagrange duality in multiobjective optimization. Optimization 26, 315–324 (1992)CrossRefGoogle Scholar
  59. 59.
    Ward, D.E., Lee, G.M.: On relations between vector optimization problems and vector variational inequalities. J. Optim. Theory Appl. 113 (3), 583–596 (2002)CrossRefGoogle Scholar
  60. 60.
    Yang, X.M., Yang, X.Q., Chen, G.Y.: Theorems of the alternative and optimization with set-valued maps. J. Optim. Theory Appl. 107, 627–640 (2000)CrossRefGoogle Scholar
  61. 61.
    Yang, X.M., Yang, X.Q., Teo, K.L.: Some remarks On Minty vector variational inequality. J. Optim. Theory Appl. 121 (1), 193–201 (2004)CrossRefGoogle Scholar
  62. 62.
    Yen, N.D.: On G-semidifferentiable functions in Euclidean spaces. J. Optim. Theory Appl. 85 (2), 377–392 (1995)CrossRefGoogle Scholar
  63. 63.
    Zeng, R., Caron, R.J.: Generalized Motzkin alternative theorems and vector optimization problems. J. Optim. Theory Appl. 131, 281–299 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of PisaPisaItaly

Personalised recommendations