Advertisement

Strong KKT, Second Order Conditions and Non-solid Cones in Vector Optimization

  • Joydeep Dutta
Chapter
Part of the Vector Optimization book series (VECTOROPT, volume 1)

Abstract

In this chapter we shall concentrate on studying the Karush–Kuhn–Tucker (KKT) type optimality conditions for both Pareto and weak Pareto minimum of a usual vector optimization problem, that is, a vector optimization problem with equality and inequality constraints. It is now a well known fact that the KKT conditions for scalar optimization problems play a major role in the analysis of algorithms. It is still not clear whether the KKT conditions for a vector optimization problem plays such a significant role. However that does not mean that there is really no use studying them. They do play a fundamental role in understanding the nature of the solutions of a vector optimization. Further they can always be used as an optimality certificate through which we can conclusively decide that a point is not a Pareto minimum or a weak Pareto minimum. Optimality conditions can also lead to the design of certain merit functions which can lead to robust error bounds for a convex vector optimization problems with strongly convex objective functions. Thus it is important for us to develop necessary and sufficient optimality conditions for a vector optimization problem.

Keywords

Vector Optimization Tangent Cone Vector Optimization Problem Order Optimality Condition Asplund Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Aghezzaf B. and Hachimi M. Second-order optimality conditions in multiobjective optimization problems. J. Optim.  Theory Appl. 102, 37–50, (1999)CrossRefGoogle Scholar
  2. 2.
    Hachimi M and Aghezzaf, B.: New results on second-order optimality conditions in vector optimization problems. J.  Optim.  Theory Appl. 135 117–133, (2007)CrossRefGoogle Scholar
  3. 3.
    Bigi, G.: On sufficient second order optimality conditions in multiobjective optimization. Math. Methods Oper.  Res. 63, 77–85, (2006)CrossRefGoogle Scholar
  4. 4.
    Burke J.V., M.C. Ferris, M.C. and Qian, M.: On the Clarke subdifferential of distance function of a closed set. J.  Math.  Anal. Appl. 166, 199–213 (1992)Google Scholar
  5. 5.
    Charitha, C. and Dutta. J.: Regularized gap functions and error bounds for vector variational inequalities. Pacific J.  Optim. 6, 497–510 (2010)Google Scholar
  6. 6.
    Clarke. F.: Optimization and nonsmooth analysis. Wiley-Interscience, 1983Google Scholar
  7. 7.
    Clarke, F., Ledyaev, Yu. S., Stern, R.J. and Wolenski, P.R.: Nonsmooth analysis and control theory. Graduate Texts in Mathematics, 178. Springer-Verlag, New York, 1998Google Scholar
  8. 8.
    Craven B. D., Control and Optimization, Chapman and Hall, 1995Google Scholar
  9. 9.
    Dutta, J.: Generalized derivatives and nonsmooth optimization, a finite dimensional tour, (With discussions and a rejoinder by the author). TOP 13, 185–314 (2005)CrossRefGoogle Scholar
  10. 10.
    Durea, M. and Dutta, J.: Lagrange multipliers for Pareto minima in general Banach spaces. Pacific J.  Optim. 4, 447–463 (2008)Google Scholar
  11. 11.
    Durea, M., Dutta, J. and Tammer, C.: Lagrange multipliers for e-Pareto solutions in vector optimization with nonsolid cones in Banach spaces. J. Optim. Theory Appl. 145, 196–211 (2010)CrossRefGoogle Scholar
  12. 12.
    Durea, M., Tammer, C.: Fuzzy necessary optimality conditions for vector optimization problems. Optimization 58, 449–467 (2009)CrossRefGoogle Scholar
  13. 13.
    Ehrgott, M.: Multicriteria optimization. Second edition. Springer-Verlag, Berlin, 2005Google Scholar
  14. 14.
    Eichfelder, G.: Adaptive scalarization methods in multiobjective optimization. Springer-Verlag, Berlin, 2008CrossRefGoogle Scholar
  15. 15.
    Fukushima, M.: Equivalent differentiable optimization problems and descent methods for asymmetric variational inequality problems. Math. Prog. Ser. A 53, 99–110 (1992)CrossRefGoogle Scholar
  16. 16.
    Gerth (Tammer), Ch. and Wiedner, C.P.: Nonconvex separation theorems and some applications in vector optimization. J. Optim. Theory. Appl. 67, 297–320 (1990)Google Scholar
  17. 17.
    Guerraggi, A. and Luc D. T.: Optimality conditions for C 1, 1 constrained multiobjective problems. J.  Optim.  Theory Appl. 116, 117–129, (2003)CrossRefGoogle Scholar
  18. 18.
    Geoffrion, A. M.: Proper efficiency and the theory of vector maximization. J. Math. Anal. Appl. 22, 618–630 (1968)CrossRefGoogle Scholar
  19. 19.
    Ginchev I., Guerraggio A. and Rocca, M.: Second-order conditions in C 1, 1C1,1 constrained vector optimization. Math. Prog.  104, 389–405, (2005)CrossRefGoogle Scholar
  20. 20.
    Giorgi, G., Jimnez, B. and Novo, V.: Strong Kuhn-Tucker conditions and constraint qualifications in locally Lipschitz multiobjective optimization problems. TOP 17 (l), 288–304 (2009)Google Scholar
  21. 21.
    Göpfert, Riahi, H., Tammer, C., and Zălinescu, C.: Variational Methods in Partially Ordered Spaces. Springer, Berlin, 2003Google Scholar
  22. 22.
    Guler, O.: Foundations of Optimization. Springer, New York, 2010CrossRefGoogle Scholar
  23. 23.
    Hiriat-Urruty, J.B.: Tangent cones generalized gradients and mathematical programming in Banach spaces. Math. Oper. Res. 4, 79–97 (1979)CrossRefGoogle Scholar
  24. 24.
    Ioffe, A.D.: Approximate subdifferentials and applications II, Mathematika 33, 111–128 (1986)CrossRefGoogle Scholar
  25. 25.
    Ioffe, A.D.: Approximate subdifferentials and applications II : The metric theory. Mathematika 36, 1–38 (1989)CrossRefGoogle Scholar
  26. 26.
    Jahn, J.: Vector optimization: Theory, applications, and extensions. Springer-Verlag, Berlin, 2004Google Scholar
  27. 27.
    Jourani, A., and Thibault, L.: The approximate subdifferential of composite functions. Bull. Austral.  Math.  Soc. 47, 443–455 (1993)CrossRefGoogle Scholar
  28. 28.
    Kuhn, H.W. and Tucker, A.W.: Nonlinear programming. Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability, 481–492, (1992) University of California Press, Berkeley and Los Angeles, 1951Google Scholar
  29. 29.
    Luc, D.T.: Theory of vector optimization. Lecture Notes in Economics and Mathematical Systems, 319. Springer-Verlag, Berlin, 1989Google Scholar
  30. 30.
    Maeda, T.: Constraint qualifications in multiobjective optimization problems: differentiable case. J. Optim. Theory Appl. 80 (3), 483–500 (1994)CrossRefGoogle Scholar
  31. 31.
    Maeda T. : Second-order conditions for efficiency in nonsmooth multiobjective optimization problems. J.  Optim.  Theory Appl. 122, 521–538, (2004)CrossRefGoogle Scholar
  32. 32.
    Mordukhovich, B. S.: Variational analysis and generalized differentiation, I: Applications. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 331. Springer-Verlag, Berlin, 2006Google Scholar
  33. 33.
    Mordukhovich B. S.: Variational analysis and generalized differentiation, II. Applications. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 331. Springer-Verlag, Berlin, 2006Google Scholar
  34. 34.
    Rockafellar R. T. : Convex Analysis, Princeton University Press, 1970Google Scholar
  35. 35.
    Zălinescu C.: Stability for a class of nonlinear optimization problems and applications. In: Nonsmooth Optimization and Related Topics (Erice, 1988), Plenum, New York, 437–458, 1989Google Scholar
  36. 36.
    Wang S. : Second order necessary and sufficient conditions in multionjective programming, Num.  Funct. Anal.  Opt. 12, 237–252, (1991)CrossRefGoogle Scholar
  37. 37.
    Zaffaroni, A.: Degrees of effciency and degrees of minimality. SIAM J. Control Optim. 42, 107–1086 (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Department of Mathematics and StatisticsIndian Institute of Technology KanpurKanpurIndia

Personalised recommendations