Advertisement

Variable Ordering Structures in Vector Optimization

  • Gabriele Eichfelder
Chapter
Part of the Vector Optimization book series (VECTOROPT, volume 1)

Abstract

In vector optimization one assumes in general that a partial ordering is given by some nontrivial convex cone K in the considered space Y. But already in 1974 in one of the first publications [37] related to the definition of optimal elements in vector optimization also the idea of variable ordering structures was given: to each element of the space a cone of dominated (or preferred) directions is defined and thus the ordering structure is given by a set-valued map. In [37] a candidate element was defined to be nondominated if it is not dominated by any other reference element w.r.t. the corresponding cone of this other element. Later, also another notion of optimal elements in the case of a variable ordering structure was introduced [7,  8,  9]: a candidate element is called a minimal (or nondominated-like) element if it is not dominated by any other reference element w.r.t. the cone of the candidate element.

Keywords

Convex Cone Vector Optimization Multiobjective Optimization Problem Vector Variational Inequality Sufficient Optimality Condition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This contribution was partially written during the author’s stay at the Institute of Mathematics, Hanoi, Vietnam, which was supported by the Alexander von Humboldt-Foundation and the Institute of Mathematics of Hanoi. The author thanks Prof. Dr. Truong Xuan Duc Ha for hospitality and discussions on the topic of this chapter.

References

  1. 1.
    Al-Homodan, S., Ansari, Q.H., Schaible, S.: Existence of solutions of systems of generalized implicit vector variational inequalities. J. Optim. Theory Appl. 134, 515–531 (2007)CrossRefGoogle Scholar
  2. 2.
    Ansari, Q.H., Yao, J.C.: On nondifferentiable and nonconvex vector optimization problems. J. Optim. Theory Appl. 106, 475–488 (2000)CrossRefGoogle Scholar
  3. 3.
    Baatar, D., Wiecek, M.M.: Advancing equitability in multiobjective programming. Comput. Math. Appl. 52, 225–234 (2006)CrossRefGoogle Scholar
  4. 4.
    Bergstresser, K., Charnes, A., Yu, P.L.: Generalization of domination structures and nondominated solutions in multicriteria decision making. J. Optim. Theory Appl. 18, 3–13 (1976)CrossRefGoogle Scholar
  5. 5.
    Bishop, E., Phelps, R.R.: The support functionals of a convex set. Proc. Sympos. Pure Math. 7, 27–35 (1962)Google Scholar
  6. 6.
    Ceng, L.-C., Huang, S.: Existence theorems for generalized vector variational inequalities with a variable ordering relation. J. Global Optim. 46, 521–535 (2010)CrossRefGoogle Scholar
  7. 7.
    Chen, G.Y.: Existence of solutions for a vector variational inequality: an extension of the Hartmann-Stampacchia Theorem. J. Optim. Theory Appl. 74, 445–456 (1992)CrossRefGoogle Scholar
  8. 8.
    Chen, G.Y., Huang, X., Yang, X.: Vector Optimization, Set-Valued and Variational Analysis. Springer, Berlin (2005)Google Scholar
  9. 9.
    Chen, G.Y., Yang, X.Q.: Characterizations of variable domination structures via nonlinear scalarization. J. Optim. Theory Appl. 112, 97–110 (2002)CrossRefGoogle Scholar
  10. 10.
    Chen, G.Y., Yang, X.Q., Yu, H.: A nonlinear scalarization function and generalized quasi-vector equilibrium problems. J. Global Optim. 32, 451–466 (2005)CrossRefGoogle Scholar
  11. 11.
    Chew, K.L.: Domination structures in abstract spaces. Southeast Asian Bulletin of Mathematics. Proc. first franco-southeast Asian Math. Conference, 190–204 (1979)Google Scholar
  12. 12.
    Eichfelder, G.: Adaptive Scalarization Methods in Multiobjective Optimization. Springer, Berlin (2008)CrossRefGoogle Scholar
  13. 13.
    Eichfelder, G.: An adaptive scalarization method in multi-objective optimization. SIAM J. Optim. 19, 1694–1718 (2009)CrossRefGoogle Scholar
  14. 14.
    Eichfelder, G.: Optimal elements in vector optimization with a variable ordering structure. J. Optim. Theory and Appl. 151 (2011)Google Scholar
  15. 15.
    Eichfelder, G., Ha, T.X.D.: Optimality conditions for vector optimization problems with variable ordering structures. Optimization (2011) doi: 10.1080/02331934.2011.579939 Preprint series of the Institute of Applied Mathematics, Univ. Erlangen-Nürnberg 338 (2010)Google Scholar
  16. 16.
    Engau, A.: Variable preference modeling with ideal-symmetric convex cones. J. Global Optim. 42, 295–311 (2008)CrossRefGoogle Scholar
  17. 17.
    Gerth (Tammer), C., Weidner, P.: Nonconvex separation theorems and some applications in vector optimization. J. Optim. Theory Appl. 67, 297–320 (1990)Google Scholar
  18. 18.
    Göpfert, A., Riahi, H., Tammer, C., Zălinescu, C.: Variational Methods in Partially Ordered Spaces. Springer, New York (2003)Google Scholar
  19. 19.
    Ha, T.X.D.: Optimality conditions for several types of efficient solutions of set-valued optimization problems. In: Nonlinear Analysis and Variational Problems, Eds. P. Pardalos, Th.M. Rassias, A.A. Khan. Springer, 305–324 (2009)Google Scholar
  20. 20.
    Hiriart-Urruty, J-B.: New concepts in nondifferentiable programming. Bull. Soc. Math. France 60, 57–85 (1979)Google Scholar
  21. 21.
    Huang, N.J., Yang, X.Q., Chan, W.K.: Vector complementarity problems with a variable ordering relation. Eur. J. Oper. Res. 176, 15–26 (2007)CrossRefGoogle Scholar
  22. 22.
    Jahn, J.: Vector Optimization - Theory, Applications, and Extensions. Springer, Heidelberg (2004)Google Scholar
  23. 23.
    Jahn, J.: Bishop-Phelps cones in optimization. International J. Optim.: Theory, Meth. Appl. 1, 123–139 (2009)Google Scholar
  24. 24.
    Kasimbeyli, R.: A nonlinear cone separation theorem and scalarization in nonconvex vector optimization. SIAM J. Optim. 20, 1591–1619 (2010)CrossRefGoogle Scholar
  25. 25.
    Kostreva, M.M., Ogryczak, W., Wierzbicki, A.: Equitable aggregations in multiple criteria analysis. Eur. J. Oper. Res. 158, 362–377 (2004)CrossRefGoogle Scholar
  26. 26.
    Krasnoselskii, M.A.: Positive solutions of operator equations. Noordhoff, Groningen (1964)Google Scholar
  27. 27.
    Lee, G.M., Kim, D.S., Lee, B.S.: On noncooperative vector equilibrium. Indian J. Pure Appl. Math. 27, 735–739 (1996)Google Scholar
  28. 28.
    Lee, G.M., Kim, D.S., Kuk, H.: Existence of solutions for vector optimization problems. J. Math. Anal. Appl. 220, 90–98 (1998)CrossRefGoogle Scholar
  29. 29.
    Liu, C.G., Ng, K.F., Yang, W.H.: Merit functions in vector optimization. Math. Prog. Ser. A 119, 215–237 (2009)CrossRefGoogle Scholar
  30. 30.
    Ogryczak, W., Sliwinski, T.: On solving linear programs with the ordered weighted averaging objective. Eur. J. Oper. Res. 148, 80–91 (2003)CrossRefGoogle Scholar
  31. 31.
    Pascoletti, A., Serafini, P.: Scalarizing vector optimization problems. J. Optim. Theory Appl. 42, 499–524 (1984)CrossRefGoogle Scholar
  32. 32.
    Petschke, M.: On a theorem of Arrow, Barankin, and Blackwell. SIAM J. Control Optim. 28, 395–401 (1990)CrossRefGoogle Scholar
  33. 33.
    Thieke, C.: Private communication (2010)Google Scholar
  34. 34.
    Wacker, M.: Multikriterielle Optimierung bei Registrierung medizinischer Daten. Diplomarbeit, Univ. Erlangen-Nürnberg, Germany (2008)Google Scholar
  35. 35.
    Wacker, M., Deinzer, F.: Automatic robust medical image registration using a new democratic vector optimization approach with multiple measures. In: Medical Image Computing and Computer-Assisted Intervention MICCAI 2009, Eds. G.-Z. Yang et al., 590–597 (2009)Google Scholar
  36. 36.
    Xiao, G., Xiao, H., Liu, S.: Scalarization and pointwise well-posedness in vector optimization problems. J. Global Optim. 49, 561–574 (2011)CrossRefGoogle Scholar
  37. 37.
    Yu, P.L.: Cone convexity, cone extreme points, and nondominated solutions in decision problems with multiobjectives. J. Optim. Theory Appl. 14, 319–377 (1974)CrossRefGoogle Scholar
  38. 38.
    Yu, P.L.: Multiple-criteria Decision Making: Concepts, Techniques and Extensions. Plenum Press, New York (1985)Google Scholar
  39. 39.
    Zaffaroni, A.: Degreesof efficiency and degreees of minimality. SIAM J. Control Optim. 42, 1071–1086 (2003)CrossRefGoogle Scholar
  40. 40.
    Zheng, F.: Vector variational inequalities with semi-monotone Operators. J. Global Optim. 32, 633–642 (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of Erlangen-NurembergErlangenGermany

Personalised recommendations