Skip to main content

Thermal Effects on Phase Response Curves and Synchronization Transition

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6675))

Abstract

We study temperature modulated synchronization phenomena in the Morris-Lecar (ML) models with synaptic couplings. Little has been known about the thermal effects on synchronization in a real nervous system. Dynamical mechanisms on such synchronization are investigated by linear stability analysis with phase descriptions for the ML type, in order to understand the effects of temperature on the phase response curve (PRC). We find two types of PRC shape modulation induced by changes in temperature that depend on an injected current amplitude: (1) the PRC shape switch between the type-I and type-II, and (2) the almost unchanged appearance of a type-II PRC. A large variety of synchronization is demonstrated with these changes in the PRC shapes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Moore, J.W.: Temperature and drug effects on squid axon membrane ion conductances. Fed. Proc. 17, 113 (1958)

    Google Scholar 

  2. Cao, X., Oertel, D.: Temperature affects voltage-sensitive conductances differentially in octopus cells of the mammalian cochlear nucleus. J. Neurophysiol. 94, 821–832 (2005)

    Article  Google Scholar 

  3. Carpenter, D.O.: Temperature effects on pacemaker generation, membrane potential, and critical firing threshold in Aplysia neurons. J. Gen. Physiol. 50(6), 1469–1484 (1967)

    Article  Google Scholar 

  4. Guttman, R.: Temperature dependence of oscillation in squid axons: comparison of experiments with computations. Biophys. J. 9(3), 269–277 (1969)

    Article  Google Scholar 

  5. Ishiko, N., Loewenstein, W.R.: Effects of Temperature on the Generator and Action Potentials of a Sense Organ. J. Gen. Physiol. 45(1), 105–124 (1961)

    Article  Google Scholar 

  6. Hodgkin, A.L., Huxley, A.F., Katz, B.: Measurement of current-voltage relations in the membrane of the giant axon of Loligo. J. Physiol. 116, 424–448 (1952)

    Article  Google Scholar 

  7. Wilson, H.R.: Spikes, Decisions, and Actions: The Dynamical Foundation of Neuroscience. Oxford University Press, New York (1999)

    MATH  Google Scholar 

  8. Rall, W.: Distinguishing theoretical synaptic potentials computed for different soma-dendritic distributions of synaptic input. J. Neurophysiol. 30, 1138–1168 (1967)

    Google Scholar 

  9. Kuramoto, Y.: Chemical Oscillations, Waves, and Turbulence. Springer, Berlin (1984)

    Book  MATH  Google Scholar 

  10. Mehrotra, A., Sangiovanni-Vincentelli, A.: Noise Analysis of Radio Frequency Circuits. Kluwer Academic Publishers, Dordrecht (2004)

    Book  MATH  Google Scholar 

  11. Sato, Y.D., Shiino, M.: Generalization of coupled spiking models and effects of the width of an action potential on synchronization phenomena. Phys. Rev. E 75, 011909 (2007)

    Article  MathSciNet  Google Scholar 

  12. Morris, C., Lecar, H.: Voltage oscillations in the barnacle giant muscle fiber. Biophys. J. 35(1), 193–213 (1981)

    Article  Google Scholar 

  13. Wechselberger, M., Wright, C.L., Bishop, G.A., Boulant, J.A.: Ionic channels and conductance based models for hypothalamic neuronal thermosensitivity. Am. J. Physiol. Regul. Integr. Comp. Physiol. 291(3), R518–R529 (2006)

    Article  Google Scholar 

  14. Ermentrout, B.: Type I membranes, phase resetting curves, and synchrony. Neural Comput. 8(5), 979–1001 (1996)

    Article  Google Scholar 

  15. Van Vreeswijk, C., Abbott, L.F., Ermentrout, G.B.: Inhibition, not excitation, synchronizes coupled neurons. J. Comput. Neurosci. 1, 303–313 (1994)

    Google Scholar 

  16. Van Vreeswijk, C.: Partially synchronized states in networks of pulse-coupled neurons. Phys. Rev. E 54, 5522–5537 (1996)

    Article  Google Scholar 

  17. Wang, X.-J., Buzsáki, G.: Gamma oscillations by synaptic inhibition in a hippocampal interneuronal network. J. Neurosci. 16(20), 6402–6413 (1996)

    Google Scholar 

  18. Sato, Y.D.: Synchronization Phenomena in a Pair of Coupled Neuronal Oscillator Systems. Doctoral Thesis, Tokyo Institute of Technology (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sato, Y.D., Okumura, K., Ichiki, A., Shiino, M. (2011). Thermal Effects on Phase Response Curves and Synchronization Transition. In: Liu, D., Zhang, H., Polycarpou, M., Alippi, C., He, H. (eds) Advances in Neural Networks – ISNN 2011. ISNN 2011. Lecture Notes in Computer Science, vol 6675. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21105-8_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21105-8_34

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21104-1

  • Online ISBN: 978-3-642-21105-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics