• Satya S. Narina
  • Madhuri Jasti
  • Ramesh Buyyarapu
  • Ranjana BhattacharjeeEmail author


Cassava (Manihot esculenta Crantz) is one of the major starchy staple root crops for over 800 million people living throughout the tropics including Africa. This crop is considered as one of the most important staples of sub-Saharan Africa accounting for the highest cassava harvest worldwide, followed by Asia and South America, and the demand for its cultivation in the next 20 years is expected to increase due to population growth. The main center of diversity of Manihot species is Brazil. Wild populations of M. esculenta ssp. flabellifolia (Euphorbiaceae) are considered to be the most probable progenitor of domesticated cassava. Most Manihot species are perennial and vary in growth pattern from nearly acaulescent subshrubs to small trees. Like in most crops, wild Manihot species are great resources for important traits such as robustness and resistance/tolerance to diseases, pests and tolerance to frost, and other root quality traits. These wild species constitute valuable genetic reservoirs harboring genes that show novel characters and aid in introgression of useful traits into the cultivated Manihot species for increased yield and tolerance for biotic and abiotic stresses. High protein combined with low hydrocyanic acid content has been achieved by screening of the wild relatives of cassava. Studies on the wild Manihot species in their natural habitats revealed resistance to drought and excessive soil aluminum toxicity as well as adaptation to low temperature. Hybrids derived by crossing with such wild species showed high root productivity and resistance to stem borers. Apomixis was also discovered in the wild species and later transferred successfully to the cultivated species. The use of such improved cassava varieties resulted in 49% increase over the average yield. Conservation of cassava genetic resources and protection from genetic erosion provides an avenue for its genetic improvement and sustainable production over many years to come. Based on the research findings available so far, it is often difficult to separate cultivated cassava from wild Manihot species, therefore, this review focuses on all the information available till date on Manihot species, including cultivated cassava.


Wild Relative Cassava Mosaic Disease African Cassava Mosaic Virus Cassava Cultivar Cassava Brown Streak Disease 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Akano A, Barrera E, Dixon AGO, Mba C, Fregene M (2002) Molecular genetic mapping of resistance to the African cassava mosaic disease. Theor Appl Genet 105:521–525PubMedGoogle Scholar
  2. Allem AC (1984) A taxonomic revision of Manihot section Quinquelobae. PhD Thesis, University of Reading, Reading, UKGoogle Scholar
  3. Allem AC (1994) The origin of Manihot esculenta Crantz (Euphorbiaceae). Genet Resour Crop Evol 41:133–150Google Scholar
  4. Allem AC (1999) The closest wild relatives of cassava (Manihot esculenta Crantz). Euphytica 107:123–133Google Scholar
  5. Allem AC (2002) The origin and taxonomy of cassava. In: Hillocks RJ, Thresh JM, Belloti AC (eds) Cassava: biology, production and utilization. CABI, New York, USA, pp 1–16Google Scholar
  6. Allem AC, Mendes RA, Salomão AN, Burle ML (2001) The primary gene pool of cassava (Manihot esculenta Crantz ssp. esculenta, Euphorbiaceae). Euphytica 120:127–132Google Scholar
  7. Amma CSE, Sheela MN, Pillai PKT (1995) Combining ability heterosis and gene action for three major quality traits in cassava. J Root Crops 21(1):24–29Google Scholar
  8. Anderson JV, Delseny M, Fregene MA, Jorge V, Mba C, Lopez C, Restrepo S, Soto S, Piegu B, Verdier V, Cooke R, Tohme J, Horvath DP (2004) An EST resource for cassava and other species of Euphorbiaceae. Plant Mol Biol 56:527–539PubMedGoogle Scholar
  9. Angel F, Arias D, Tohme J, Iglesias C, Roca W (1993) Towards the construction of a molecular map of cassava (Manihot esculenta Crantz): comparison of restriction enzymes and probe sources in detecting RFLPs. J Biotechnol 31:103–113PubMedGoogle Scholar
  10. Awoleye F, Van Duren M, Dolezel J, Novak FJ (1994) Nuclear DNA content and in vitro induced somatic polyploidization (Manihot esculenta Crantz) cassava breeding. Euphytica 76:195–202Google Scholar
  11. Bai KV (1987) Recent advances in cassava genetics and cytogenetics. In: Hershey CH (ed) Cassava breeding: a multidisciplinary review. Proceedings of a workshop held in the Philippines, 4–7 Mar 1985, pp 35–49Google Scholar
  12. Beeching JR, Marmey P, Gavalda MC, Noirot M, Haysom HR, Hughes MA, Charrier A (1993) An assessment of genetic diversity within a collection of cassava germplasm using molecular markers. Ann Bot 72:515–520Google Scholar
  13. Bonierbale M, Roa AC, Maya MM, Duque MC, Tohme J (1997) Assessment of genetic diversity in Manihot species with AFLPs. Afr J Root Tuber Crops 2:139Google Scholar
  14. Botstein D, White RL, Skolnick MH, Davis RW (1980) Construction of a genetic map in man using restriction fragment length polymorphisms. Am J Hum Genet 32:314–331PubMedGoogle Scholar
  15. Brush SB (1999) Genetic erosion of crop populations in centers of diversity: a revision. In: Proceedings of the Technical Meeting on the Methodology of FAO, Views on the PGR, Research Institute of Crop Production, Prague, Czech Republic, pp. 34–44Google Scholar
  16. Bryne M, Murrell JC, Owen JV, Kriedemann A, Williams GR, Moran GF (1997) Identification and mode of action of quantitative trait loci affecting seedling height and leaf area in Eucalyptus nitens. Theor Appl Genet 94:674–681Google Scholar
  17. Bunyeth H, Preston TR (2006) Growth performance and parasite infestation of goats given cassava leaf silage, or sun-dried cassava leaves, as supplement to grazing in lowland and upland regions of Cambodia. Livestock Research for Rural Development, vol 18, Art No 28.
  18. Carvalho LJCB, Schaal BA (2001) Assessing genetic diversity in the cassava (Manihot esculenta Crantz) germplasm collection in Brazil using PCR-based markers. Euphytica 120:133–142Google Scholar
  19. Ceballos H, Iglesias CA, Perez JC, Dixon AGO (2004) Cassava breeding: opportunities and challenges. Plant Mol Biol 56:503–516PubMedGoogle Scholar
  20. Charoenrath S, Tongsri W, Watananon A, Limsila T, Srinakarakut R (2006) A new Thai cassava cultivar with improved starch and ethanol yields. In: Ortiz R, Nassar NMA (eds) Cassava improvement to enhance livelihoods in Sub-Saharan Africa and Northeastern Brazil. First international meeting on cassava breeding, biotechnology and ecology, Brasilia, Brazil, 11–15 Nov 2006, Univ de Brasilia, Brasilia, BrazilGoogle Scholar
  21. Chavarriaga-Aguirre P, Maya M, Tohme J, Duque MC, Iglesias C, Bonierbale MW, Kresovich S, Kochert G (1999) Using microsatellites, isozymes and AFLPs to evaluate genetic diversity and redundancy in the cassava core collection and to assess the usefulness of DNA-based markers to maintain germplasm collections. Mol Breed 5:263–273Google Scholar
  22. CIAT (2003) Annual report IP3: improved cassava for developing world. CIAT, Cali, Colombia, pp 8.1–8.3Google Scholar
  23. Cortés DF, Reilly K, Beeching JR, Tohme J (2002) Mapping genes implicated in post-harvest physiological deterioration in cassava (Manihot esculenta Crantz). Euphytica 128:47–53Google Scholar
  24. de Wet JMJ (1980) Origin of polyploids. In: Lewis W (ed) Polyploidy: biological relevance. Plenum, New York, USA, pp 3–15Google Scholar
  25. Dobzhansky T (1973) Genética do processo evolutivo. Tradução de Celso Abbade Mourão, São Paulo, Polígono Ed, p 453Google Scholar
  26. Duputie A, David P, Debain C, McKey D (2007) Natural hybridization between a clonally propagated crop, cassava (Manihot esculenta Crantz) and a wild relative in French Guiana. Mol Ecol 16:3025–3028PubMedGoogle Scholar
  27. Ekanayake I, Osiru DSO, Porto MCM (1997) Morphology of cassava. IITA Res Guide Ser 61:27Google Scholar
  28. Emperaire L, Pinton F, Second G (1998) Une gestion dynamique de la diversité variétale du manioc en Amazonie du Nord-Ouest. Nature, Science et Société 6(2):27–42Google Scholar
  29. Escobar RH, Mafla G, Roca WM (1997) A methodology for recovering cassava plants from shoot tips maintained in liquid nitrogen. Plant Cell Rep 16:474–478Google Scholar
  30. FAO (2008) FAOSTAT database.
  31. FAO (2009) Production Yearbook. Food and Agricultural Organisation, Rome, Italy, pp. 251Google Scholar
  32. FAO (2010) Africa’s food security: learning from success. FAO Regional Office for Africa. pp 13Google Scholar
  33. Fregene MA, Vargas J, Ikea J, Angel F, Tohme J, Asiedu RA, Akoroda MO, Roca WM (1994) Variability of chloroplast DNA and nuclear ribosomal DNA in cassava (Manihot esculenta Crantz) and its wild relatives. Theor Appl Genet 89:719–727Google Scholar
  34. Fregene M, Angel F, Gómez R, Rodríguez F, Roca W, Tohme J, Bonierbale M (1997) A molecular genetic map of cassava (Manihot esculenta Crantz). Theor Appl Genet 95:431–441Google Scholar
  35. Fregene M, Okogbenin E, Mba C, Angel F, Suarez MC, Guitiérez J, Chavarriaga P, Roca W, Bonierbale M, Tohme J (2001) Genome mapping in cassava improvement: challenges, achievements and opportunities. Euphytica 120:159–165Google Scholar
  36. Fregene M, Suarez M, Mkumbira J, Kulembeka H, Ndedya E, Kulaya A, Mitchel S, Gullberg U, Dixon AGO, Dean R, Kresovich S (2003) Simple sequence repeat (SSR) diversity of cassava (Manihot esculenta Crantz) landraces: genetic diversity and differentiation in an asexually propagated crop. Theor Appl Genet 107:1083–1093PubMedGoogle Scholar
  37. Frison EA, Feliu E (1991) FAO/IBPGR technical guidelines for the safe movement of cassava germplasm. Food and Agriculture Organization of the United Nations (FAO) and International Beareau for Plant Genetic Resources (IBPGR), Rome, ItalyGoogle Scholar
  38. Fukuda WM, Guevara CL (1998) Descriptores morfologicos e agronômicos para a caracterização de mandioca (Manihot esculenta Crantz). Cruz das Almas, EMBRAPA-CNPMF, Bahia, Brazil, 38 pGoogle Scholar
  39. Fukuda WM, Saad N (2001) Participatory research in cassava breeding with farmers in northeastern Brazil. Working document number 99, CNPMF, Cruz da Almas, Bahia, Brazil, 42 pGoogle Scholar
  40. Gedil M, Sartie A (2010) Perspectives of molecular breeding of Africa’s main staple food crops – cassava and yam. Asp Appl Biol 96:123–135Google Scholar
  41. Gomez R, Angel F, Bonierbale M, Rodriguez F, Tohme J, Roca W (1996) Inheritance of random amplified polymorphic DNA markers in cassava (Manihot esculenta Crantz). Genome 39(5):1039–1043PubMedGoogle Scholar
  42. Graner EA (1942) Genetica de Manihot. I. Heriteriadade da formafolha e da coloracao da pelicula externa das raices en Manihotutilissima Pohl. Bragantia 2:13–22Google Scholar
  43. Guarino L (1995) Assessing the threat of genetic erosion. In: Guarino L, Ramanatha Rao V, Reid R (eds) Collecting plant genetic diversity: technical guidelines. CABI, Wallingford, UK, pp 67–74Google Scholar
  44. Gulick P, Hershey C, Esquinas-Alcazar J (1983) Genetic resources of cassava and wild relatives. International Board for Plant Genetic Resources, Rome, ItalyGoogle Scholar
  45. Hahn SK (1989) An overview of African traditional cassava processing and utilisation. Outlook Agric 18:110–118Google Scholar
  46. Hahn SK (1993) Méthodes traditionnelles de transformation et d’utilisation du manioc en Afrique. Guide de recherche de l’IITA (41):45Google Scholar
  47. Hahn SK, Terry ER, Leuschner K (1980) Cassava breeding for resistance to cassava mosaic disease. Euphytica 29:673–683Google Scholar
  48. Hahn SK, Isoba JCG, Ikotun T (1989) Resistance breeding in root and tuber crops at International Institute of Tropical Agriculture (IITA). Crop Prot 8:147–168Google Scholar
  49. Hahn SK, Bai KV, Asiedu R (1990) Tetraploids, triploids, and 2n pollen from diploid interspecific crosses with cassava. Theor Appl Genet 79:433–439Google Scholar
  50. Hahn WC, Stewart SA, Brooks MW, York SG, Eaton E, Kurachi A, Beijersbergen RL, Knoll JH, Meyerson M, Weinberg RA (1999) Inhibition of telomerase limits the growth of human cancer cells. Nat Med 10(5):1164–1170Google Scholar
  51. Harlan J (1961) Geographic origin of plants useful to agriculture. Am Assoc Adv Sci 66:3–9Google Scholar
  52. Harshey C, Ocampo C (1989) New marker genes found in cassava. Cassava Newsl 13:1–5Google Scholar
  53. Iglesias CA (1994) Interfase entre los programas de mejoramientos, los campos de los agricultores y los mervados de la yucca en Latinoamerica. Documento de Trabajo, 138, CIAT, Cali, ColumbiaGoogle Scholar
  54. IITA (2000b) Annual reports. IITA (International Institute of Tropical Agriculture), Ibadan, NigeriaGoogle Scholar
  55. IITA (2000c) Enhancement of income-generation potential through the development and transfer of improved cassava genetic material and adoption of post-harvest technologies in Africa. A report by IITA to the International Fund for Agricultural Development (IFAD). IITA (International Institute of Tropical Agriculture), Ibadan, Nigeria, 200 pGoogle Scholar
  56. IITA (2000d) The contribution of IITA – improved cassava to food security in sub-Saharan Africa: an impact study. IITA (International Institute of Tropical Agriculture), Ibadan, Nigeria, 10 pGoogle Scholar
  57. Jeffreys A, Wilson JV, Thein L (1985) Hypervariable ‘minisatellite’ regions in human DNA. Nature 314:67–73PubMedGoogle Scholar
  58. Jennings DL (1959) Manihot melanobasis Muell. Agr. – a useful parent for cassava breeding. Euphytica 8:157–162Google Scholar
  59. Jennings DL (1963) Variation in pollen and ovule fertility in varieties of cassava and the effect of interspecific crossing on fertility. Euphytica 12:69–76Google Scholar
  60. Jennings DL, Hershey CH (1985) Cassava breeding: a decade of progress from international programmes. In: Russel GE (ed) Progress in plant breeding 1. Butterworths, London, UK, pp 89–116Google Scholar
  61. Jennings DL, Iglesias CA (2002) Breeding for crop improvement. In: Hillocks RJ, Thresh JM, Bellotti AC (eds) Cassava: biology, production and utilization. CABI, New York, USA, pp 149–166Google Scholar
  62. Jos JS, Nair SG (1979) Pachytene pairing in relation to pollen fertility in five cultivars of cassava. Cytologia 44:813–820Google Scholar
  63. Jos JS, Bai KV, Sreekumari MT (1987) Triploidy as a tool in cassava improvement. In: Proceedings of national symposium on production and utilization of tropical tuber crops, CTCRI, Trivandrum, India, 27–29 Nov 1987, pp 7–13Google Scholar
  64. Kawano K (1978) Genetic improvement of cassava (Manihot esculenta Crantz) for productivity. In: Tropical agriculture research, Series 11. Ministry of Agriculture and Forestry, Tokyo, Japan, p 21Google Scholar
  65. Kawano K (2003) Thirty years of cassava breeding for productivity – biological and social factors for success. Crop Sci 43:1325–1335Google Scholar
  66. Krishnan R, Magoon ML, Bai KV (1970) The pachytene karyotype of Manihot glaziovii. Genet Iber 22:177–191Google Scholar
  67. Lebot V (2009) Tropical root and tuber crops: cassava, sweet potato, yams and aroids, 17th edn. CABI, Wallingford, UKGoogle Scholar
  68. Lefevre F, Charrier A (1993a) Heredity of seventeen isozyme loci in cassava (Manihot esculenta Crantz). Euphytica 66:171–178Google Scholar
  69. Lefevre F, Charrier A (1993b) Isozyme diversity within African Manihot germplasm. Euphytica 66:73–80Google Scholar
  70. Léotard G, McKey D (2004) Phylogeography and origin of domestication of cassava: insights from G3pdh sequence data from cassava and wild relatives in the Guianas. Poster presented at 6th international science meet of the cassava biotechnology network, CIAT, Cali, Colombia, 8–14 Mar 2004Google Scholar
  71. Li HQ, Sautter C, Potrykus I, Puonti-Kaerlas J (1996) Genetic transformation of cassava (Manihot esculenta Crantz). Nat Biotechnol 14:736–740PubMedGoogle Scholar
  72. Litt M, Lutty JA (1989) A hypervariable microsatellite revealed by in vitro amplification of a dinucleotide repeat within the cardiac muscle actin gene. Am J Hum Genet 44:397–401PubMedGoogle Scholar
  73. Lokko Y, Dixon AGO, Offei SK, Danquah E (2003) Complementarity of genes for resistance to the cassava mosaic disease. In: Proceedings of 5th African crop science conference, Lagos, Nigeria, 21–26 Oct 2001. IITA, Ibadan, Nigeria, vol 5, pp 29–33Google Scholar
  74. Lokko Y, Dixon A, Offei SK, Danquah EY (2004) New directions for a diverse planet. In: Proceedings of 4th international crop science congress, Brisbane, Australia, 26 Sept – 01 Oct 2004Google Scholar
  75. Lokko Y, Anderson JV, Rudd SA, Raji AA, Horvath DP, Mikel MA, Kim RW, Liu L, Hernandez AG, Dixon AG, Ingelbrecht I (2007) Characterization of an 18,166 EST dataset for cassava (Manihot esculenta Crantz) enriched for drought-responsive genes. Plant Cell Rep 26:1605–1618PubMedGoogle Scholar
  76. Magoon ML, Krishnan R, Vijaybai K (1969) Morphology of pachytene chromosomes and meiosis in Manihot esculanta Crantz. Cytologia 34:612–618Google Scholar
  77. Mba REC, Stephenson P, Edwards K, Melzer S, Nkumbira J, Gullberg U, Apel K, Gale M, Tohme J, Fregene M (2001) Simple sequence repeat (SSR) markers survey of the cassava (Manihot esculenta Crantz) genome: towards an SSR-based molecular genetic map of cassava. Theor Appl Genet 102:21–31Google Scholar
  78. Mendiburu AO, Peloquin SJ (1977) The significance of 2n gametes in potato breeding. Theor Appl Genet 49:53–61Google Scholar
  79. Mok DWK, Peloquin SS (1975) The inheritance of three mechanisms of diploandroid (2n pollen) formation in diploid potatoes. Heredity 35:295–302Google Scholar
  80. Nassar NMA (1978a) Conservation of the genetic resources of cassava (Manihot esculenta Crantz). Determination of wild species localities with emphasis on probable origin. Econ Bot 32:311–320Google Scholar
  81. Nassar NMA (1978b) Some further species of Manihot with potential value to cassava breeding. Can J Plant Sci 58:915–916Google Scholar
  82. Nassar NMA (1978c) Genetic resources of cassava: chromosome behavior in some Manihot species. Indian J Genet 38:135–137Google Scholar
  83. Nassar NMA (1978d) Microcenters of wild cassava Manihot spp. diversity in Central Brazil. Turrialba 28(4):543–547Google Scholar
  84. Nassar NMA (1980) The need for germplasm conservation in wild cassava. Indian J Genet 39(3):465–470Google Scholar
  85. Nassar NMA (1985) Manihot neusana Nassar: a new species native to Paraná, Brazil. Can J Plant Sci 65:1097–1100Google Scholar
  86. Nassar NMA (1989) Broadening the genetic base of cassava, Manihot esculenta Crantz, by interspecific hybridization. Can J Plant Sci 69:1071–1073Google Scholar
  87. Nassar NMA (1991) Production of triploid cassava, Manihot esculenta Crantz, by hybrid diploid gametes. Field Crops Res 13:173–182Google Scholar
  88. Nassar NMA (1992) Cassava in South America: a plant breeder view. Ciên Cult (J Braz Assoc Adv Sci) 44:25–27Google Scholar
  89. Nassar NMA (1994) Development and selection for apomixis in cassava, Manihot esculenta Crantz. Can J Plant Sci 74:857–858Google Scholar
  90. Nassar NMA (1997) Development of cassava interspecific hybrids for savanna conditions. J Root Crops 22:9–17Google Scholar
  91. Nassar NMA (1999) Cassava, Manihot esculenta Crantz genetic resources: their collection, evaluation and manipulation. Adv Agron 69:179–230Google Scholar
  92. Nassar NMA (2000) Wild cassava, Manihot spp.: biology and potentialities for genetic improvement. Genet Mol Biol 23(1):201–212Google Scholar
  93. Nassar NMA (2001) The nature of apomixis in cassava (Manihot esculenta Crantz). Hereditas 134:185–187PubMedGoogle Scholar
  94. Nassar NMA (2003) Cassava, Manihot esculenta Crantz and wild relatives: their relationship and evolution. Genet Resour Crop Evol 48:429–436Google Scholar
  95. Nassar MA, Cardenas F (1985) Collecting wild cassava in northern Mexico. FAO/IBPGR Plant Genet Resour Newsl 65:29–30Google Scholar
  96. Nassar NMA, Collevatti RG (2005) Microsatellite markers confirm high apomixis level in cassava inbred lines. Hereditas 142:1–5Google Scholar
  97. Nassar NMA, Dorea G (1982) Protein contents of cassava cultivars and its hybrid with Manihot species. Turrialba 32(4):429–432Google Scholar
  98. Nassar NMA, Freitas M (1997) Prospects of polyploidizing cassava, Manihot esculenta Crantz, by unreduced microspores. Plant Breed 116:195–197Google Scholar
  99. Nassar NMA, Grattapaglia D (1986) Variabiliade de clones de mandioca em relação a fertilidade e aspectos morfológicos. Turrialba 36(4):555–559Google Scholar
  100. Nassar NMA, Ortiz R (2007) Cassava improvement: challenges and impact. J Agric Sci 145:163–171Google Scholar
  101. Nassar NMA, Santos R (2002) Does selection improve apomixis in cassava? J Root Crops 25:1–3Google Scholar
  102. Nassar NMA, Nassar HNM, Vieira C, Saraiva SL (1995) Cytogenetic behavior of interspecific hybrids of cassava and M. neusansa Nassar. Can J Plant Sci 75:675–678Google Scholar
  103. Nassar NMA, Nassar HNM, Carvalho CG, Vieira C (1996) Induction of a productive aneuploid in cassava, Manihot esculenta Crantz. Braz J Genet 19:123–125Google Scholar
  104. Nassar NMA, Vieira MA, Vieira C, Grattapaglia D (1998) Molecular and embryonic evidence of apomixis in cassava interspecific hybrids (Manihot esculenta Crantz.). Euphytica 102:9–13Google Scholar
  105. Ng SYC, Ng NQ (1997) Cassava in vitro germplasm management at the International Institute of Tropical Agriculture. Afr J Root Crops 2(1–2):232–233Google Scholar
  106. Ng NQ, Ng SYC (2002) Genetic resources and conservation. In: Hillocks RJ, Thresh JM, Bellotti AC (eds) Cassava: biology, production and utilization. CABI, New York, USA, pp 167–178Google Scholar
  107. Ng SYC, Mantell SH, Ng NQ (1999) Biotechnology in germplasm management of cassava and yams. In: Benson EE (ed) Plant conservation biotechnology. Taylor and Francis, London, pp 179–202Google Scholar
  108. Nguyen TLT, Gheewala SH (2008) Life cycle assessment of fuel ethanol from cassava in Thailand. Int J Life Cycle Assess 13:301–311Google Scholar
  109. Nichols RFW (1947) Breeding cassava for virus resistance. E Afr Agric J 12:184–194Google Scholar
  110. Nigel T, Paul C, Krit R, Dimuth S, Peng Z (2005) Development and application of transgenic technologies in cassava. Plant Mol Biol 56:671–688Google Scholar
  111. Ocampo C, Hershey C, Iglesias C, Iwanaga M (1992) Esterase isozyme fingerprinting of the cassava germplasm collection held at CIAT. In: Roca W, Thro AM (eds) Proceedings of 1st international science meeting of the cassava biotechnology network, CIAT, Cali, Columbia, pp 81–89Google Scholar
  112. Ocampo C, Angel F, JimCnez M, Jaramillo G, Hershey C, Granados E, Iglesias C (1995) DNA fingerprinting to confirm possible genetic duplicates in cassava germplasm. The Cassava Biotechnology Network. In: Proceedings of 2nd international science meeting, Bogor, Indonesia, 22–26 Aug 1994, CIAT, Cali, Columbia, pp 145–147Google Scholar
  113. Ojulong H, Labuschagne MT, Herselman L, Fregene M (2008) Introgression of genes for dry matter content from wild cassava species. Euphytica 164:163–172Google Scholar
  114. Okogbenin E, Marin J, Fregene M (2006) An SSR-based molecular genetic map of cassava. Euphytica 147:433–440Google Scholar
  115. Olsen KM (2004) SNPs, SSRs and inferences on cassava’s origin. Plant Mol Biol 56:517–526PubMedGoogle Scholar
  116. Olsen KM, Schaal BA (1999) Evidence on the origin of cassava: phylogeography of Manihot esculenta. Proc Natl Acad Sci USA 96:5586–5591PubMedGoogle Scholar
  117. Olsen KM, Schaal BA (2001) Microsatellite variation in cassava (Manihot esculenta, Euphorbiaceae) and its wild relatives: further evidence for a southern Amazonian origin of domestication. Am J Bot 88:131–142PubMedGoogle Scholar
  118. Otim-Nape GW, Bua A, Baguma Y (1994) Accelerating the transfer of improved production technologies controlling African cassava mosaic virus disease epidemics in Uganda. Afr Crop Sci J 2:479–495Google Scholar
  119. Panis B, Lambardi M (2005) Status of cryopreservation technologies in plants (crop and forest trees). In: Proceedings of the workshop on. The role of Biotechnology, Turin, Italy, pp. 43–54Google Scholar
  120. Pickersgill B (1998) Crop introductions and the development of secondary areas of diversity. In: Prendergast HD (ed) Plants for food and medicine. Royal Botanical Gradens, Kew, UK, pp 93–105Google Scholar
  121. Pillai SV, Nair RR, Sumarani GO, Ravi V (2002) Germplasm management in Cassava with special emphasis on core collection. In: International conference on vegetables, Bangalore, India, 11–14 Nov 2002Google Scholar
  122. Pillay M, Kenny ST (1996) Random amplified polymorphic DNA markers in hop, Humulus lupulus: level of genetic variability and segregation in F1 progeny. Theor Appl Genet 92:334–339Google Scholar
  123. Raemakers CJJM, Sofiari E, Taylor N, Henshaw GG, Jacobsen E, Visser RGF (1996) Production of transgenic cassava (Manihot esculenta Crantz) plants by particle bombardment using luciferase activity as selection marker. Mol Breed 2:339–349Google Scholar
  124. Raemakers CJJM, Jacobsen E, Visser RGF (1997) Micropropagation of Manihot esculenta Crantz (cassava). In: Bajaj YPS (ed) Biotechnology in agriculture and forestry, vol 39. Springer, Berlin, Germany, pp 77–103Google Scholar
  125. Rajendran PG (1989) Combining ability in cassava. J Root Crops 15(1):15–18Google Scholar
  126. Raji A, Anderson J, Kolade O, Ugwu C, Dixon A, Ingelbrecht I (2009) Gene-based microsatellites for cassava (Manihot esculenta Crantz): prevalence, polymorphisms, and cross-taxa utility. BMC Plant Biol 9(1):118PubMedGoogle Scholar
  127. Ramirez H, Hussain A, Roca WM, Bushuk W (1987) Isozyme electrophoregrams of 16 enzymes in five tissues of cassava (Manihot esculenta Cruntz). Euphytica 36:39–48Google Scholar
  128. Ravindran V (1993) Cassava leaves as animal feed: potential and limitations. J Food Sci Agric 6:141–150Google Scholar
  129. Reginaldo C, Marcelo G (2002) Cytogenetics of Manihot esculenta Crantz (cassava) and eight related species. Hereditas 136(2):159–168Google Scholar
  130. Reed B, Dumet D, Denoma JM, Benson EE (2001) Validation of cryopreservationGoogle Scholar
  131. Rickard JE (1985) Physiological deterioration of cassava roots. J Food Sci Agric 36:167–176Google Scholar
  132. Roa AC, Maya MM, Duque MC, Thome J, Allem AC, Bonierbale MW (1997) AFLP analysis of relationships among cassava and other Manihot species. Theor Appl Genet 95:741–750Google Scholar
  133. Roa AC, Chavarriaga-Aguirre P, Duque MC, Maya MM, Bonierbale MW, Iglesias C, Tohme J (2000) Cross-species amplification of cassava (Manihot esculenta) (Euphorbiaceae) microsatellites: allelic polymorphism and degree of relationship. Am J Bot 87(11):1647–1655PubMedGoogle Scholar
  134. Rogers DJ (1965) Some botanical and ethnological considerations of Manihot esculenta. Econ Bot 19:369–377Google Scholar
  135. Rogers DJ, Appan C (1973) Manihot, Manihotoides, Euphorbiaceae. Flora Neotropica. Hafner, New York, USAGoogle Scholar
  136. Sakai A, Engelmann F (2007) Vitrification, encapsulation-vitrification and droplet-vitrification: a review. CryoLetters 28:151–172PubMedGoogle Scholar
  137. Sakurai T, Plata G, Rodriguez-Zapata F, Seki M, Salcedo A, Toyoda A, Ishiwata A, Tohme J, Sakaki Y, Shinozaki K, Ishitani M (2007) Sequencing analysis of 20000 full-length cDNA clones from cassava reveals lineage specific expansions in gene families related to stress response. BMC Plant Biol 7:66PubMedGoogle Scholar
  138. Salick J, Cellinese N, Knapp S (1997) Indigenous diversity of cassava: generation, maintenance, use and loss among the Amuesha, Peruvian upper Amazon. Econ Bot 51:6–19Google Scholar
  139. Sánchez G, Restrepo S, Duque MC, Fregene M, Bonierbale M, Verdier V (1999) AFLP assessment of genetic variability in cassava accessions (Manihot esculenta) resistant and susceptible to the cassava bacterial blight (CBB). Genome 42:163–172PubMedGoogle Scholar
  140. Sauer CO (1952) Agricultural origins and dispersals. The American Geographical Society, New York, USAGoogle Scholar
  141. Sauer JD (1993) Historical Geography of Crop Plants. CRC, Boca Raton, Florida, USA, pp. 22Google Scholar
  142. Schaal BA, Olson PD, Prinzie TP, Carvalho LJCB, Tonukari J, Hayworth DA (1994) Phylogenetic analysis of the genus Manihot based on molecular markers. In: Roca WM, Thro AM (eds) Proceedings of 1st science meeting of the cassava biotechnology network, Cartagena, Colombia, 25–28 Aug 1992. Working document no 123, CIAT, Cali, Colombia, pp 106–122Google Scholar
  143. Schaal B, Carvalho LJCB, Prinzie T, Olsen K, Hernandez M, Cabral G, Moeller D (1997) Phylogenetic relationships and genetic diversity in Manihot species. Afr J Root Tuber Crops 2:147–149Google Scholar
  144. Schöpke C, Franche C, Bogusz D, Chavarriaga P, Fauquet C, Beachy RN (1993) Transformation in cassava (Manihot esculenta Crantz). In: Bajaj YPS (ed) Plant protoplasts and genetic engineering, vol 23. Springer, Berlin, Germany, pp 273–298Google Scholar
  145. Schöpke C, Taylor N, Crcamo R, Konan NK, Marmey P, Henshaw GG, Beachy R, Fauquet C (1996) Regeneration of transgenic cassava plants (Manihot esculenta Crantz) from microbombarded embryogenic suspension cultures. Nat Biotechnol 14:731–735PubMedGoogle Scholar
  146. Scott GJ, Rosegrant MK, Ringler C (2000) Global projections for root and tuber crops to the year 2020. Food Policy 25:561–597Google Scholar
  147. Stamp JA (1987) Somatic embryogenesis in cassava: the anatomy and morphology of the regeneration process. Ann Bot 59:451–459Google Scholar
  148. Stamp JA, Henshaw GG (1982) Somatic embryogenesis in cassava. Z Pflanzenphysiol 105:183–187Google Scholar
  149. Storey HH, Nichols RFW (1938) Studies on the mosaic diseases of cassava. Ann Appl Biol 25:790–806Google Scholar
  150. Taylor N, Chavarriaga P, Raemakers K, Siritunga D, Zhang P (2004) Development and application of transgenic technologies in cassava. Plant Mol Biol 56:671–688PubMedGoogle Scholar
  151. Tonukari NJ (2004) Cassava and the future of starch. Electron J Biotechnol 7:5–8Google Scholar
  152. Umanah EE, Hartman RW (1973) Chromosome numbers and karyotypes of some Manihot species. J Am Soc Hortic Sci 98:272–274Google Scholar
  153. Vavilov NI (1951) Phytogeographic basis of plant breeding. The origin, variation, immunity and breeding of cultivated plants. Chron Bot 13:1–366Google Scholar
  154. Vorsa N, Bingham ET (1979) Cytology of pollen formation in diploid alfalfa, Medicago sativa. Can J Genet Cytol 21:526–530Google Scholar
  155. Vos P, Hogers R, Bleeker M, Reijans M, van der Lee T, Hornes M, Fritjers A, Pot J, Peleman J, Kuiper M, Zabeau M (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acid Res 23:4407–4414PubMedGoogle Scholar
  156. Walker G, Holmes B (1996) The Amazon: into the forest. New Sci 151:26–43Google Scholar
  157. Wanyera NMW, Hahn SK, Aken’Ova ME (1994) Introgression of ceara rubber (Manihot glaziovii) into cassava (Manihot esculenta): a morphological and electrophoretic evidence. In: Proceedings of 5th triennial symposium of the international society for tropical root crops – Africa branch, Kampala, Uganda, 22–28 Nov 1992, pp 125–130Google Scholar
  158. Watson L, Dallwitz MJ (1992) The families of flowering plants: descriptions, illustrations, identification, and information retrieval. Version: 10 Apr 2008.
  159. Willemen L, Scheldeman X, Cabellos VS, Salazar SR, Guarino L (2007) Spatial patterns of diversity and genetic erosion of traditional cassava (Manihot esculenta Crantz) in the Peruvian Amazon: an evaluation of socio-economic and environmental indicators. Genet Resour Crop Evol 54:1599–1612Google Scholar
  160. Williams JGK, Kubelik AR, Livak KJ, Rafalski JA, Tingey SV (1990) DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acid Res 18:6531–6535PubMedGoogle Scholar
  161. Wricke G, Weber WE (1986) Quantitative genetics and selection in plant breeding. Walter de Gruyter, Berlin, GermanyGoogle Scholar
  162. Wu KK, Burnquist W, Sorrells ME, Tew TL, Moore PH, Tanksley SD (1992) The detection and estimation of linkage in polyploids using single dose restriction fragments. Theor Appl Genet 83:294–300Google Scholar
  163. Young BA, Sherwood RT, Bashaw EC (1979) Cleared-pistil and thick sectioning techniques for detecting aposporous apomixis in grasses. Can J Bot 57:1668–1672Google Scholar
  164. Ziskaa LH, Runion GB, Tomecek MB, Prior SA, Torbet HA, Sicher RC (2009) An evaluation of cassava, sweet potato and field corn as potential carbohydrate sources for bioethanol production in Alabama and Maryland. Biomass Bioenergy 33:1503–1508Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Satya S. Narina
    • 1
  • Madhuri Jasti
    • 2
  • Ramesh Buyyarapu
    • 3
  • Ranjana Bhattacharjee
    • 4
    Email author
  1. 1.Department of BiologyVirginia State UniversityPetersburgUSA
  2. 2.Department of Veterinary Integrative BiosciencesTexas A&M UniversityCollege StationUSA
  3. 3.Dow Agro SciencesTrait Genetics and TechnologiesIndianapolisUSA
  4. 4.Genetic Resources CenterInternational Institute of Tropical Agriculture, IITAIbadanNigeria

Personalised recommendations