Skip to main content

State Feedback Control Based on Twin Support Vector Regression Compensating for a Class of Nonlinear Systems

  • Conference paper
Advances in Neural Networks – ISNN 2011 (ISNN 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6676))

Included in the following conference series:

  • 2333 Accesses

Abstract

In this paper, we introduce a new twin support vector regression (TSVR) algorithm, which estimates an unknown function by approaching its up and lower boundary, the ending function is obtained by the mean of the two function. For the class of nonlinear systems composed by linear and nonlinear parts, we use TSVR with a wavelet kernel to estimate the unknown nonlinear part in the original system and to counteract it, and then a state feedback control is carried out to realize a close loop control for the compensated system. Simulation results show that the TSVR with the wavelet kernel has good approaching ability and generalization. The whole close loop system with a state feedback control is stable when the compensating errors satisfy certain conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Vapnik, V.N.: The natural of statistical learning theory. Springer, New York (1995)

    Book  MATH  Google Scholar 

  2. Burges, C.: A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery 2, 1–43 (1998)

    Article  Google Scholar 

  3. Cortes, C., Vapnik, V.N.: Support vector networks. Machine Learning 20, 273–297 (1995)

    MATH  Google Scholar 

  4. Sun, C.Y., Mu, C.X., Li, X.M.: A weighted LS-SVM approach for the identification of a class of nonlinear inverse systems. Science in China Series F: Information Sciences 52(5), 770–779 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Mangasarian, O.L., Wild, E.W.: Multisurface proximal support vector classification via generalized eigenvalues. IEEE Transactions on Pattern Analysis and Machine Intelligence 28(1), 69–74 (2006)

    Article  Google Scholar 

  6. Jayadeva, R., Khemchandani, Chandra, S.: Twin support vector machines for pattern classification. IEEE Transactions on Pattern Analysis and Machine Intelligence 29(5), 905–910 (2007)

    Article  MATH  Google Scholar 

  7. Ghorai, S., Mukherjee, A., Dutta, P.K.: Nonparallel plane proximal classifier. Signal Processing 89, 510–522 (2009)

    Article  MATH  Google Scholar 

  8. Kumar, M.A., Gopal, M.: Least squares twin support vector machines for pattern classification. Expert Systems with Applications 36, 7535–7543 (2009)

    Article  Google Scholar 

  9. Kumar, M.A., Gopal, M.: Application of smoothing technique on twin support vector machines. Pattern Recognition Letter. 29, 1842–1848 (2008)

    Article  Google Scholar 

  10. Peng, X.: TSVR: An efficient twin support vector machine for regression. Neural Networks 23(3), 365–372 (2010)

    Article  Google Scholar 

  11. Kim, K.B., Park, J.B., Choi, Y.H., et al.: Control of chaotic dynamical systems using radial basis function network approximators. Information Sciences 130, 165–183 (2000)

    Article  MATH  Google Scholar 

  12. Saunders, C., Gammerman, A., Vovk, V.: Ridge regression learning algorithm in dual variables. In: Proceeding of 15th International Conference on Machine Learning, pp. 515–521 (1998)

    Google Scholar 

  13. Smola, A., Scholkopf, B., Muller, K.R.: The connection between regularization operators and support vector kernels. Neural Networks 11, 637–649 (1998)

    Article  Google Scholar 

  14. Zhang, L., Zhou, W.D., Jiao, L.C.: Wavelet support vector machine. IEEE Transaction on Systems, Man, and Cybernetics-Part B: Cybernetics 34, 1–6 (2003)

    Google Scholar 

  15. Yu, Z.H., Cai, Y.L.: Least squares wavelet support vector machines for nonlinear system identification. In: Wang, J., Liao, X.-F., Yi, Z. (eds.) ISNN 2005. LNCS, vol. 3497, pp. 436–441. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  16. Liu, H., Liu, D., Ren, H.P.: Chaos control based on least square support vector machines. Acta Physica Sinica 54(9), 4019–4025 (2005)

    Google Scholar 

  17. Brauer, F., Nohel, J.A.: The qualitative theory of ordinary differential equations: an introduction. Dover Publications, Dover (1989)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mu, C., Sun, C., Yu, X. (2011). State Feedback Control Based on Twin Support Vector Regression Compensating for a Class of Nonlinear Systems. In: Liu, D., Zhang, H., Polycarpou, M., Alippi, C., He, H. (eds) Advances in Neural Networks – ISNN 2011. ISNN 2011. Lecture Notes in Computer Science, vol 6676. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21090-7_60

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21090-7_60

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21089-1

  • Online ISBN: 978-3-642-21090-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics