Skip to main content

Nonenzymatic and Metal-Ion-Dependent RNA Cleavage, and RNase Models

  • Chapter
  • First Online:
Ribonucleases

Part of the book series: Nucleic Acids and Molecular Biology ((NUCLEIC))

Abstract

Systematic variation of individual amino acid residues within the catalytic core by means of protein engineering has turned out to be a powerful tool for the mechanistic studies of ribonucleases. The results of such studies are, however, open to alternative interpretations, since the replacement of even a single residue may affect chain folding. This, in turn, alters the geometry, non-covalent interactions and mutual orientation of the catalytically active residues to such an extent that identification of the real origin of the observed influence on rate remains uncertain. Unambiguous structure–reactivity correlations based on studies with structurally simplified chemical models may help to distinguish between alternative mechanisms. The present review is aimed at summarizing the results of such model studies. Accordingly, cleavage of RNA phosphodiester bonds by solvent-derived species, general acids and bases, metal ions, and multifunctional small molecular entities is surveyed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ait-Haddou H, Sumaoka J, Wiskur SL, Folmer-Andersen JF, Anslyn E (2002) Remarkable cooperativity between a ZnII ion and guanidinium/ammonium groups in the hydrolysis of RNA. Angew Chem Int Ed 41:4014–4016

    Article  CAS  Google Scholar 

  • Albedyhl S, Schnieders D, Jancso A, Gajda T, Krebs B (2002) Heterodinuclear Zn(II)-Iron(III) complexes and dinuclear zinc complexes as models for zinc-containing phosphatases. Eur J Inorg Chem 6:1400–1409

    Article  Google Scholar 

  • Beckmann C, Kirby AJ, Kuusela S, Tickle DC (1998) Mechanisms of catalysis by imidazole buffers of the hydrolysis and isomerisation of RNA models. J Chem Soc Perkin Trans 2:573–581

    Google Scholar 

  • Beloglazova N, Vlassov A, Konevetz D, Silnikov V, Zenkova M, Giege R, Vlassov V (1999) Mechanism and specificity of RNA cleavage by chemical ribonucleases. Nucleosides Nucleotides 18:1463–1465

    Article  PubMed  CAS  Google Scholar 

  • Belousoff MJ, Graham B, Spiccia L, Tor Y (2009) Cleavage of RNA oligonucleotides by aminoglycosides. Org Biomol Chem 7:30–33

    Article  PubMed  CAS  Google Scholar 

  • Boero M, Terakura K, Tateno M (2002) Catalytic role of metal ion in the selection of competing reaction paths: a first principles molecular dynamics study of the enzymatic reaction in ribozyme. J Am Chem Soc 124:8949–8957

    Article  PubMed  CAS  Google Scholar 

  • Breslow R, Dong SD, Webb Y, Xu R (1996) Further studies on the buffer-catalyzed cleavage and isomerization of uridyluridine. Medium and ionic strength effects on catalysis by morpholine, imidazole, and acetate buffers help clarify the mechanisms involved and their relationship to the mechanism used by the enzyme ribonuclease and by a ribonuclease mimic. J Am Chem Soc 118:6588–6600

    Article  CAS  Google Scholar 

  • Brown DM, Todd AR (1955) Nucleic acids. Annu Rev Biochem 24:311–338

    Article  PubMed  CAS  Google Scholar 

  • Brown RS, Lu Z-L, Liu CT, Tsang WY, Edwards DR, Neverov AA (2010) Dinuclear Zn(II) catalysts as biomimics of RNA and DNA phosphoryl transfer enzymes: changing the medium from water to alcohol provides enzyme-like rate enhancements. J Phys Org Chem 23:1–15

    CAS  Google Scholar 

  • Bunn SE, Liu CT, Lu Z-L, Neverov AA, Brown RS (2007) The dinuclear Zn(II) complex catalyzed cyclization of a series of 2-hydroxypropyl aryl phosphate RNA models: progressive change in mechanism from rate-limiting P-O bond cleavage to substrate binding. J Am Chem Soc 129:16238–16248

    Article  PubMed  CAS  Google Scholar 

  • Chaubey B, Tripathi S, Desire J, Baussanne I, Decout J-L, Pandey VN (2007) Mechanism of RNA cleavage catalyzed by sequence specific polyamide nucleic acid-neamine conjugate. Oligonucleotides 17:302–313

    Article  PubMed  CAS  Google Scholar 

  • Cowan JA (2001) Chemical nucleases. Curr Opin Chem Biol 5:634–642

    Article  PubMed  CAS  Google Scholar 

  • Davies JE, Doltsinis NL, Kirby AJ, Roussev CD, Sprik M (2002) Estimating pK a values for pentaoxyphosphoranes. J Am Chem Soc 124:6594–6599

    Article  PubMed  CAS  Google Scholar 

  • Davis AM, Hall AD, Williams A (1988) Charge description of base-catalyzed alcoholysis of aryl phosphodiesters: a ribonuclease model. J Am Chem Soc 110:5105–5108

    Article  CAS  Google Scholar 

  • Dimroth K, Jaenicke L, Heizel D (1950) Die spaltung der pentose-nuckeinsäure der hefe mit bleihydroxyd. Liebigs Ann Chem 566:206–210

    Article  CAS  Google Scholar 

  • Edwards DR, Tsang W-Y, Neverov AA, Brown RS (2010) On the question of stepwise vs. concerted cleavage of RNA models promoted by a synthetic dinuclear Zn(II) complex in methanol: implementation of a noncleavable phosphonate probe. Org Biomol Chem 8:822–827

    Article  PubMed  CAS  Google Scholar 

  • Emilsson GM, Nakamura S, Roth A, Breaker RR (2003) Ribozyme speed limits. RNA 9:907–918

    Article  PubMed  CAS  Google Scholar 

  • Fan Y, Gao YQ (2007) A DFT study on the mechanism of phosphodiester cleavage mediated by monozinc complexes. J Am Chem Soc 129:905–913

    Article  PubMed  CAS  Google Scholar 

  • Fan YB, Gao YQ (2010) Cooperativity between metals, ligands and solvent: a DFT study on the mechanism of a dizinc complex-mediated phosphodiester cleavage. Acta Phys Chim Sin 26:1034–1042

    CAS  Google Scholar 

  • Feng G, Mareque-Rivas JC, de Rosales RTM, Williams NH (2005) A highly reactive mononuclear Zn(II) complex for phosphodiester cleavage. J Am Chem Soc 127:13470–13471

    Article  PubMed  CAS  Google Scholar 

  • Feng G, Mareque-Rivas JC, Williams NH (2006a) Comparing a mononuclear Zn(II) complex with hydrogen bond donors with a dinuclear Zn(II) complex for catalyzing phosphate ester cleavage. Chem Commun 1845–1847

    Google Scholar 

  • Feng G, Natale D, Prabaharan R, Mareque-Rivas JC, Williams NH (2006b) Efficient phosphodiester binding and cleavage by a ZnII complex combining hydrogen-bonding interactions and double Lewis acid activation. Angew Chem Int Ed 45:7056–7059

    Article  CAS  Google Scholar 

  • Fouace S, Gaudin C, Picard S, Corvaisier S, Renault J, Carboni B, Felden B (2004) Polyamine derivatives as selective RNase A mimics. Nucleic Acids Res 32:151–157

    Article  PubMed  CAS  Google Scholar 

  • Gajda T, Krämer R, Jancso A (2000) Structure, equilibrium and ribonuclease activity of copper(II) and zinc(II) complexes formed with a dinucleating bis-imidazole ligand. Eur J Inorg Chem 2000(6):1635–1644

    Article  Google Scholar 

  • Gerratana B, Sowa GA, Cleland WW (2000) Characterization of the transition-state structures and mechanisms for the isomerization and cleavage reactions of uridine 3′-m-nitrobenzyl phosphate. J Am Chem Soc 122:12615–12621

    Article  CAS  Google Scholar 

  • Giege R, Felden B, Zenkova MA, Silnikov VN, Vlassov VV (2000) Cleavage of RNA with synthetic ribonuclease mimics. Meth Enzymol 318:147–165

    Article  PubMed  CAS  Google Scholar 

  • Harris ME, Dai Q, Gu H, Kellerman DL, Piccirilli JA, Anderson VE (2010) Kinetic isotope effects for RNA cleavage by 2′-O-transphosphorylation: nucleophilic activation by specific base. J Am Chem Soc 132:11613–11621

    Article  PubMed  CAS  Google Scholar 

  • Humphry T, Iyer S, Iranzo O, Morrow JR, Richard JP, Paneth P, Hengge AC (2008) Altered transition state for the reaction of an RNA model catalyzed by a dinuclear zinc(II) catalyst. J Am Chem Soc 130:17858–17866

    Article  PubMed  CAS  Google Scholar 

  • Iranzo O, Elmer T, Richard JP, Morrow JR (2003a) Cooperativity between metal ions in the cleavage of phosphate diesters and RNA by dinuclear Zn(II) catalysts. Inorg Chem 42:7737–7746

    Article  PubMed  CAS  Google Scholar 

  • Iranzo O, Kovalevsky AY, Morrow JR, Richard JP (2003b) Physical and kinetic analysis of the cooperative role of metal ions in catalysis of phosphodiester cleavage by a dinuclear Zn(II) complex. J Am Chem Soc 125:1988–1993

    Article  PubMed  CAS  Google Scholar 

  • Järvinen P, Oivanen M, Lönnberg H (1991) Interconversion and phosphoester hydrolysis of 2',5'- and 3',5'-dinucleoside monophosphates: kinetics and mechanisms. J Org Chem 56:5396–5401

    Article  Google Scholar 

  • Kirby AJ, Marriott RE (2002) General base catalysis vs. medium effects in the hydrolysis of an RNA model. J Chem Soc Perkin Trans 2:422–427

    Google Scholar 

  • Konevetz DA, Beck IE, Beloglazova NG, Sulimenkov IV, Zenkova MA, Shishkin GV, Vlassov VV (1999) Artificial ribonucleases: synthesis and RNA cleaving properties of cationic conjugates bearing imidazole residues. Tetrahedron 55:503–512

    Article  CAS  Google Scholar 

  • Kosonen M, Oivanen M, Lönnberg H (1994) Hydrolysis and interconversion of the dimethyl esters of 5′-O-methyluridine 2′-, and 3′-monophosphates: kinetics and mechanism. J Org Chem 59:3704–3708

    Article  CAS  Google Scholar 

  • Kosonen M, Yousefi-Salakdeh E, Strömberg R, Lönnberg H (1997) Mutual isomerization of uridine 2′- and 3′-alkylphosphates and cleavage to a 2′,3′-cyclic phosphate: the effect of the alkyl group on the hydronium- and hydroxide-ion-catalyzed reactions. J Chem Soc Perkin Trans 2:2661–2666

    Google Scholar 

  • Kosonen M, Yousefi-Salakdeh E, Strömberg R, Lönnberg H (1998) pH- and buffer-independent cleavage and mutual isomerization of uridine 2′- and 3′-alkyl phosphodiesters: implications for the buffer catalyzed cleavage of RNA. J Chem Soc Perkin Trans 2:1589–1595

    Google Scholar 

  • Kosonen M, Seppänen R, Wichmann O, Lönnberg H (1999) Hydrolysis and intramolecular transesterification of ribonucleoside 3′-phosphotriesters: comparison of structural effects in the reactions of asymmetric and symmetric dialkyl esters of 5′-O-pivaloyl-3′-uridylic acid. J Chem Soc Perkin Trans 2:2433–2439

    Google Scholar 

  • Kurz K, Göbel MW (1996) Hydrolytical cleavage of TAR-RNA, the trans-activation responsive region of HIV-1, by a bis(guanidinium) catalyst attached to arginine. Helv Chim Acta 79:1967–1979

    Article  CAS  Google Scholar 

  • Kuusela S, Lönnberg H (1993) Metal ions that promote the hydrolysis of nucleoside phosphoesters do not enhance the intramolecular phosphate migration. J Phys Org Chem 6:347–356

    Article  CAS  Google Scholar 

  • Kuusela S, Lönnberg H (1994) Metal ion promoted hydrolysis of polyuridylic acid. J Chem Soc Perkin Trans 2:2301–2306

    Google Scholar 

  • Kuznetsova IL, Zenkova MA, Gross HJ, Vlassov VV (2005) Enhanced RNA cleavage within bulge-loops by an artificial ribonuclease. Nucleic Acids Res 33:1201–1212

    Article  PubMed  CAS  Google Scholar 

  • Linjalahti H, Feng G, Mareque-Rivas JC, Mikkola S, Williams NH (2008) Cleavage and isomerization of UpU promoted by dinuclear metal ion complexes. J Am Chem Soc 130:4232–4233

    Article  PubMed  CAS  Google Scholar 

  • Liu Y, Gregersen BA, Hengge A, York DM (2006) Transesterification thio effects of phosphate diesters: free energy barriers and kinetic and equilibrium isotope effects from density-functional theory. Biochemistry 45:10043–10053

    Article  PubMed  CAS  Google Scholar 

  • Liu CT, Neverov AA, Brown RS (2007) A reductionist biomimetic model system that demonstrates highly effective Zn(II)-catalyzed cleavage of an RNA model. Inorg Chem 46:1778–1788

    Article  PubMed  CAS  Google Scholar 

  • Liu CT, Neverov AA, Brown RS (2008) Biomimetic cleavage of RNA models promoted by a dinuclear Zn(II) complex in ethanol. Greater than 30 kcal/mol stabilization of the transition state for cleavage of a phosphate diester. J Am Chem Soc 130:16711–16720

    Article  PubMed  CAS  Google Scholar 

  • Lönnberg T, Lönnberg H (2005) Chemical models for ribozyme action. Curr Opin Chem Biol 9:665–673

    Article  PubMed  Google Scholar 

  • Lönnberg H, Strömberg R, Williams A (2004) Compelling evidence for a stepwise mechanism of the alkaline cyclisation of uridine 3′-phosphate esters. Org Biomol Chem 2:2165–2167

    Article  PubMed  Google Scholar 

  • Lopez CS, Faza ON, Gregersen BA, Lopez X, de Lera AR, York DM (2004) Pseudorotation of natural and chemically modified biological phosphoranes: implications for RNA catalysis. ChemPhysChem 5:1045–1049

    Google Scholar 

  • Lopez X, Schaefer M, Dejaegere A, Karplus M (2002) Theoretical evaluation of pK a in phosphoranes: implications for phosphate ester hydrolysis. J Am Chem Soc 124:5010–5018

    Article  PubMed  CAS  Google Scholar 

  • Lopez X, Dejaegere A, Leclerc F, York DM, Karplus M (2006) Nucleophilic attack on phosphate diesters: a density functional study of in-line reactivity in dianionic, monoanionic and neutral systems. J Phys Chem B 110:11525–11539

    Article  PubMed  CAS  Google Scholar 

  • Lu Z-L, Liu CT, Neverov AA, Brown RS (2007) Rapid three-step cleavage of RNA and DNA model systems promoted by a dinuclear Cu(II) complex in methanol. Energetic origins of the catalytic efficacy. J Am Chem Soc 129:11642–11652

    Article  PubMed  CAS  Google Scholar 

  • Mäki E, Oivanen M, Poijärvi P, Lönnberg H (1999) Buffer-catalyzed interconversion of ribonucleoside 2′/3′-methylphosphonates and 2′/3′-alkylphosphates. J Chem Soc Perkin Trans 2:2493–2499

    Google Scholar 

  • Mancin F, Tecilla P (2007) Zinc(II) complexes as hydrolytic catalysts of phosphate diester cleavage: from model substrates to nucleic acids. New J Chem 31:800–817

    Article  CAS  Google Scholar 

  • Matsumura K, Komiyama M (1997) Enormously fast RNA hydrolysis by lanthanide(III) ions under physiological conditions: eminent candidates for novel tools of biotechnology. J Biochem 122:387–394

    Article  PubMed  CAS  Google Scholar 

  • Michaelis K, Kalesse M (2001) Selective cleavage of unpaired uridines with a tyrosine-cyclen conjugate. Chembiochem 2(1):79–83

    Article  PubMed  CAS  Google Scholar 

  • Mikkola S, Stenman E, Nurmi K, Yousefi-Salakdeh E, Strömberg R, Lönnberg H (1999) The mechanism of the metal ion promoted cleavage of RNA phosphodiester bonds involves a general acid catalysis by the metal aquo ion on the departure of the leaving group. J Chem Soc Perkin Trans 2:1619–1625

    Google Scholar 

  • Mikkola S, Kaukinen U, Lönnberg H (2001) The effect of secondary structure on the cleavage of the phosphodiester bonds of RNA. Cell Biochem Biophys 34:95–119

    Article  PubMed  CAS  Google Scholar 

  • Mikkola S, Kosonen M, Lönnberg H (2002) Cleavage and isomerization of RNA phosphodiester bonds: nucleoside phosphotriesters and ribo/2′-O-methylribo oligonucleotides as tools for mechanistic studies. Curr Org Chem 6:523–538

    Article  CAS  Google Scholar 

  • Mitic N, Smith SJ, Neves A, Guddat LW, Gahan LR, Schenk G (2006) The catalytic mechanisms of binuclear metallohydrolases. Chem Rev 106:3338–3363

    Article  PubMed  CAS  Google Scholar 

  • Morrow JR, Iranzo O (2004) Synthetic metallonucleases for RNA cleavage. Curr Opin Chem Biol 8:192–200

    Article  PubMed  CAS  Google Scholar 

  • Morrow JR, Amyes TL, Richard JP (2008) Phosphate binding energy and catalysis by small and large molecules. Acc Chem Res 41:539–548

    Article  PubMed  CAS  Google Scholar 

  • Neverov AA, Lu Z-L, Maxwell CI, Mohamed MF, White CJ, Tsang JSW, Brown RS (2006) Combination of a dinuclear Zn2+ complex and a medium effect exerts a 1012-fold rate enhancement of cleavage of an RNA and DNA model system. J Am Chem Soc 128:16398–16405

    Article  PubMed  CAS  Google Scholar 

  • Oivanen M, Ora M, Almer H, Strömberg R, Lönnberg H (1995) Hydrolytic reactions of the diastereomeric phosphoromonothioate analogs of uridylyl(3′,5′)uridine: kinetics and mechanisms for desulfurization, phosphoester hydrolysis and transesterification to the 2′,5′-isomers. J Org Chem 60:5620–5627

    Article  CAS  Google Scholar 

  • Piatek AM, Gray M, Anslyn EV (2004) Guanidinium groups act as general-acid catalysts in phosphoryl transfer reactions: a two-proton inventory on a model system. J Am Chem Soc 126:9878–9879

    Article  PubMed  CAS  Google Scholar 

  • Pogyminogin MA, Vlassov VV, Giege R (1993) Synthetic RNA-cleaving molecules mimicking ribonuclease A active center. Design and cleavage of tRNA transcripts. Nucleic Acids Res 21:5950–5956

    Article  Google Scholar 

  • Riguet E, Tripathi S, Chaubey B, Desire J, Pandey VN, Decout J-L (2004) A peptide nucleic acid − neamine conjugate that targets and cleaves HIV-1 TAR RNA inhibits viral replication. J Med Chem 47:4806–4809

    Article  PubMed  CAS  Google Scholar 

  • Scheffer U, Strick A, Ludwig V, Peter S, Kalden E, Göbel MW (2005) Metal-free catalysts for the hydrolysis of RNA derived from guanidines, 2-aminopyridines and 2-aminobenzimidazoles. J Am Chem Soc 127:2211–2217

    Article  PubMed  CAS  Google Scholar 

  • Selmeczi K, Michel C, Milet A, Gautier-Luneau I, Philouze C, Pierre J-L, Schnieders D, Rompel A, Belle C (2007) Structural, kinetic and theoretical studies on models of the zinc-containing phosphodiesterase active center: medium-dependent reaction mechanisms. Chem Eur J 13:9093–9106

    Article  PubMed  CAS  Google Scholar 

  • Shinozuka K, Nakashima Y, Shimizu K, Sawai H (2001) Synthesis and characterization of polyamine-based biomimetic catalysts as artificial ribonuclease. Nucleosides Nucleotides Nucleic Acids 20:117–130

    Article  PubMed  CAS  Google Scholar 

  • Torres RA, Himo F, Bruice TC, Noodleman L, Lovell T (2003) Theoretical examination of Mg2+-mediated hydrolysis of a phosphodiester linkage as proposed for the hammerhead ribozyme. J Am Chem Soc 125:9861–9867

    Article  PubMed  CAS  Google Scholar 

  • Tsang WY, Edwards DR, Melnychuk SA, Liu CT, Liu C, Neverov AA, Williams NH, Brown RS (2009) Dinuclear Zn(II) complex promotes cleavage and isomerization of 2-hydroxypropyl alkyl phosphates by a common cyclic phosphate intermediate. J Am Chem Soc 131:4159–4166

    Article  PubMed  CAS  Google Scholar 

  • Uchimaru T, Uebayasi M, Hirose T, Tsuzuki S, Yliniemelä A, Tanabe K, Taira K (1996) Electrostatic interactions that determine the rate of pseudorotation processes in oxyphosphorane intermediates: implications with respect to the roles of metal ions in the enzymatic cleavage of RNA. J Org Chem 61:1599–1608

    Article  PubMed  CAS  Google Scholar 

  • Usher DA, Richardson DI Jr, Oakenfull DG (1970) Models of ribonuclease action. II. Specific acid, specific base, and neutral pathways for hydrolysis of a nucleotide diester analog. J Am Chem Soc 92:4699–4712

    Article  PubMed  CAS  Google Scholar 

  • Virtanen N, Polari M, Välilä M, Mikkola S (2005) Kinetic solvent deuterium isotope effect in transesterification of RNA models. J Phys Org Chem 18:385–397

    Article  CAS  Google Scholar 

  • Vlassov VV, Zuber G, Felden B, Behr JP, Giege R (1995) Cleavage of tRNA with imidazole and spermine imidazole constructs: a new approach for probing RNA structure. Nucleic Acids Res 23:3161–3167

    Article  PubMed  CAS  Google Scholar 

  • Westheimer FH (1968) Pseudo-rotation in the hydrolysis of phosphate esters. Acc Chem Res 1:70–78

    Article  CAS  Google Scholar 

  • Weston J (2005) Mode of action of bi- and trinuclear zinc hydrolases and their synthetic analogues. Chem Rev 105:2151–2174

    Article  PubMed  CAS  Google Scholar 

  • Williams NH, Takasaki B, Wall M, Chin J (1999) Structure and nuclease activity of simple dinuclear metal complexes: quantitative dissection of the role of metal ions. Acc Chem Res 32:485–493

    Article  CAS  Google Scholar 

  • Yang Y, Cui Q (2009) Does water relay play an important role in phosphoryl transfer reactions? Insights from theoretical study of a model reaction in water and tert-butanol. J Phys Chem B 113:4930–4939

    Article  PubMed  CAS  Google Scholar 

  • Yang M-Y, Iranzo O, Richard JP, Morrow JR (2005) Solvent deuterium isotope effects on phosphodiester cleavage catalyzed by an extraordinarily active Zn(II) complex. J Am Chem Soc 127:1064–1065

    Article  PubMed  CAS  Google Scholar 

  • Yang M-Y, Morrow JR, Richard JP (2007) A transition state analog for phosphate diester cleavage catalyzed by a small enzyme-like metal ion complex. Bioorg Chem 35:366–374

    Article  PubMed  CAS  Google Scholar 

  • Yashiro M, Ishikubo A, Komiyama M (1995) Preparation and study of dinuclear Zn(II) complex for the efficient hydrolysis of the phosphodiester linkage in a diribonucleoside. J Chem Soc Chem Commun 1793–1794

    Google Scholar 

  • Yashiro M, Kaneiwa H, Onaka K, Komiyama M (2004) Dinuclear Zn(II) complexes in the hydrolysis of the posphodiester linkage in an diribonucleoside monophosphate diester. Dalton Trans 21(4):605–610

    Article  Google Scholar 

  • Ye J-D, Li N-S, Dai Q, Piccirilli JA (2007) The mechanism of RNA strand scission: an experimental measure of the Brönsted coefficient βnuc. Angew Chem Int Ed 46:3714–3717

    Article  CAS  Google Scholar 

  • Zhdan NS, Zenkova MA, Vlassov AV, Silnikov VN, Giege R, Vlassov VV (1999) Synthesis and characterization of artificial ribonucleases. Nucleosides Nucleotides 18:1491–1492

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harri Lönnberg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lönnberg, H. (2011). Nonenzymatic and Metal-Ion-Dependent RNA Cleavage, and RNase Models. In: Nicholson, A. (eds) Ribonucleases. Nucleic Acids and Molecular Biology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21078-5_14

Download citation

Publish with us

Policies and ethics