Advertisement

A Family of Topology–Preserving 3D Parallel 6–Subiteration Thinning Algorithms

  • Gábor Németh
  • Péter Kardos
  • Kálmán Palágyi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6636)

Abstract

Thinning is an iterative layer-by-layer erosion until only the skeleton-like shape features of the objects are left. This paper presents a family of new 3D parallel thinning algorithms that are based on our new sufficient conditions for 3D parallel reduction operators to preserve topology. The strategy which is used is called subiteration-based: each iteration step is composed of six parallel reduction operators according to the six main directions in 3D. The major contributions of this paper are: 1) Some new sufficient conditions for topology preserving parallel reductions are introduced. 2) A new 6–subiteration thinning scheme is proposed. Its topological correctness is guaranteed, since its deletion rules are derived from our sufficient conditions for topology preservation. 3) The proposed thinning scheme with different characterizations of endpoints yields various new algorithms for extracting centerlines and medial surfaces from 3D binary pictures.

Keywords

shape representation skeletonization thinning topology preservation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arcelli, C., di Baja, G.S., Serino, L.: New removal operators for surface skeletonization. In: Kuba, A., Nyúl, L.G., Palágyi, K. (eds.) DGCI 2006. LNCS, vol. 4245, pp. 555–566. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  2. 2.
    Bertrand, G., Aktouf, Z.: A 3D thinning algorithms using subfields. In: Proc. SPIE Conf. on Vision Geometry III, vol. 2356, pp. 113–124 (1994)Google Scholar
  3. 3.
    Gong, W.X., Bertrand, G.: A simple parallel 3D thinning algorithm. In: Proc. 10th Int. Conf. on Pattern Recognition, pp. 188–190 (1990)Google Scholar
  4. 4.
    Hall, R.W.: Parallel connectivity-preserving thinning algorithms. In: Kong, T.Y., Rosenfeld, A. (eds.) Topological algorithms for digital image processing, pp. 145–179. Elsevier, Amsterdam (1996)CrossRefGoogle Scholar
  5. 5.
    Kong, T.Y.: On topology preservation in 2-d and 3-d thinning. Int. Journal of Pattern Recognition and Artificial Intelligence 9, 813–844 (1995)CrossRefGoogle Scholar
  6. 6.
    Kong, T.Y., Rosenfeld, A.: Digital topology: Introduction and survey. Computer Vision, Graphics, and Image Processing 48, 357–393 (1989)CrossRefGoogle Scholar
  7. 7.
    Ma, C.M.: On topology preservation in 3D thinning. CVGIP: Image Understanding 59, 328–339 (1994)CrossRefGoogle Scholar
  8. 8.
    Ma, C.M., Wan, S.Y.: A medial-surface oriented 3-d two-subfield thinning algorithm. Pattern Recognition Letters 22, 1439–1446 (2001)CrossRefzbMATHGoogle Scholar
  9. 9.
    Ma, C.M., Wan, S.Y., Chang, H.K.: Extracting medial curves on 3D images. Pattern Recognition Letters 23, 895–904 (2002)CrossRefzbMATHGoogle Scholar
  10. 10.
    Ma, C.M., Wan, S.Y., Lee, J.D.: Three-dimensional topology preserving reduction on the 4-subfields. IEEE Trans. Pattern Analysis and Machine Intelligence 24, 1594–1605 (2002)CrossRefGoogle Scholar
  11. 11.
    Manzanera, A., Bernard, T.M., Pretêux, F., Longuet, B.: Medial faces from a concise 3D thinning algorithm. In: Proc.7th IEEE Int. Conf. Computer Vision, ICCV 1999, pp. 337–343 (1999)Google Scholar
  12. 12.
    Németh, G., Kardos, P., Palágyi, K.: Topology preserving 2-subfield 3D thinning algorithms. In: Proc. 7th IASTED Int. Conf. Signal Processing, Pattern Recognition and Applications, pp. 310–316 (2010)Google Scholar
  13. 13.
    Németh, G., Kardos, P., Palágyi, K.: Topology preserving 3D thinning algorithms using four and eight subfields. In: Campilho, A., Kamel, M. (eds.) ICIAR 2010. LNCS, vol. 6111, pp. 316–325. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  14. 14.
    Palágyi, K., Kuba, A.: A 3D 6–subiteration thinning algorithm for extracting medial lines. Pattern Recognition Letters 19, 613–627 (1998)CrossRefzbMATHGoogle Scholar
  15. 15.
    Palágyi, K., Kuba, A.: A parallel 3D 12–subiteration thinning algorithm. Graphical Models and Image Processing 61, 199–221 (1999)CrossRefGoogle Scholar
  16. 16.
    Palágyi, K.: A 3D fully parallel surface-thinning algorithm. Theoretical Computer Science 406, 119–135 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Palágyi, K., Németh, G.: Fully parallel 3D thinning algorithms based on sufficient conditions for topology preservation. In: Brlek, S., Reutenauer, C., Provençal, X. (eds.) DGCI 2009. LNCS, vol. 5810, pp. 481–492. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  18. 18.
    Shaked, D., Bruckstein, A.: Pruning medial axes. Computer Vision and Image Understanding 69, 156–169 (1998)CrossRefGoogle Scholar
  19. 19.
    Siddiqi, K., Pizer, S.: Medial representations – Mathematics, algorithms and applications. Computational Imaging and Vision, vol. 37. Springer, Heidelberg (2008)zbMATHGoogle Scholar
  20. 20.
    Wang, T., Basu, A.: A note on ‘A fully parallel 3D thinning algorithm and its applications’. Pattern Recognition Letters 28, 501–506 (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Gábor Németh
    • 1
  • Péter Kardos
    • 1
  • Kálmán Palágyi
    • 1
  1. 1.Department of Image Processing and Computer GraphicsUniversity of SzegedHungary

Personalised recommendations