Skip to main content

Isoperimetrically Optimal Polygons in the Triangular Grid

  • Conference paper
Book cover Combinatorial Image Analysis (IWCIA 2011)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6636))

Included in the following conference series:

Abstract

It is well known that a digitized circle doesn’t have the smallest (digital arc length) perimeter of all objects having a given area. There are various measures of perimeter and area in digital geometry, and so there can be various definitions of digital circles using the isoperimetric inequality (or its digital form). Usually the square grid is used as digital plane. In this paper we use the triangular grid and search for those (digital) objects that have optimal measures. We show that special hexagons are Pareto optimal, i.e., they fulfill both versions of the isoperimetric inequality: they have maximal area among objects that have the same perimeter; and they have minimal perimeter among objects that have the same area.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Altshuler, Y., Yanovsky, V., Vainsencher, D., Wagner, I.A., Bruckstein, A.M.: On Minimal Perimeter Polyminoes. In: Kuba, A., Nyúl, L.G., Palágyi, K. (eds.) DGCI 2006. LNCS, vol. 4245, pp. 17–28. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  2. Bezrukov, S.L.: Isoperimetric Problems in Discrete Spaces. In: Extremal Problems for Finite Sets, Budapest, Hungary. János Bolyai Soc. Math. Stud., vol. 3, pp. 59–91 (1994)

    Google Scholar 

  3. Bhowmick, P., Bera, S., Bhattacharya, B.B.: Digital Circularity and Its Applications. In: Wiederhold, P., Barneva, R.P. (eds.) IWCIA 2009. LNCS, vol. 5852, pp. 1–15. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  4. Bollobás, B., Radcliffe, A.J.: Isoperimetric Inequalities for Faces of the Cube and the Grid. Europ. J. Combinatorics 11, 323–333 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bornhöft, J., Brinkmann, G., Greinus, J.: Pentagon hexagon-patches with short boundaries. Europ. J. Combinatorics 24, 517–529 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  6. Brass, P.: On point sets with many unit distances in few directions. Discrete & Computational Geometry 19, 355–366 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  7. Brimkov, V.E., Barneva, R.P.: “Honeycomb” vs square and cubic models. Electronic Notes in Theoretical Computer Science 46 (2001)

    Google Scholar 

  8. Brunvoll, J., Cyvin, B.N., Cyvin, S.J.: More about extremal animals. Journal of Mathematical Chemistry 12, 109–119 (1993)

    Article  MathSciNet  Google Scholar 

  9. Datta, B.: A Discrete Isoperimetric Problem. Geometriae Dedicata 64, 55–68 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  10. Doslic, T.: Perfect Matchings in Lattice Animals and Lattice Paths with Constraints. Croatia Chemica Acta CCACAA 78(2), 251–259 (2005)

    Google Scholar 

  11. Her, I.: Geometric transformations on the hexagonal grid. IEEE Tr. Image Processing 4(9), 1213–1222 (1995)

    Article  Google Scholar 

  12. Harary, F., Harborth, H.: Extremal Animals. J. Combin. Inform. System Science 1, 1–8 (1976)

    MathSciNet  MATH  Google Scholar 

  13. Luczak, E., Rosenfeld, A.: Distance on a hexagonal grid. Transactions on Computers C-25(5), 532–533 (1976)

    Article  MATH  Google Scholar 

  14. Katona, G.O.H.: The Hamming-sphere has minimum boundary. Studia Scient. Math. Hungarica 10, 131–140 (1975)

    MathSciNet  MATH  Google Scholar 

  15. Kier, L., Seybold, P., Cheng, C.-K.: Modeling Chemical Systems Using Cellular Automata. Springer, Heidelberg (2005)

    Google Scholar 

  16. Klette, R., Rosenfeld, A.: Digital geometry. Geometric methods for digital picture analysis. Morgan Kaufmann, Elsevier Science, San Francisco, Amsterdam (2004)

    MATH  Google Scholar 

  17. Nagy, B.: A family of triangular grids in digital geometry. In: 3rd International Symposium on Image and Signal Processing and Analysis, pp. 101–106. IEEE Press, Los Alamitos (2003)

    Google Scholar 

  18. Nagy, B.: Generalized triangular grids in digital geometry. Acta Mathematica Academiae Paedagogicae Nyíregyháziensis 20, 63–78 (2004)

    MATH  Google Scholar 

  19. Nagy, B.: A symmetric coordinate frame for hexagonal networks. In: Theoretical Computer Science - Information Society 2004, pp. 193–196. ACM, Slovania (2004)

    Google Scholar 

  20. Nagy, B.: Characterization of digital circles in triangular grid. Pattern Recognition Letters 25, 1231–1242 (2004)

    Article  Google Scholar 

  21. Nagy, B.: An algorithm to find the number of the digitizations of discs with a fixed radius. Electronic Notes in Discrete Mathematics 20, 607–622 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  22. Osborne, M.J., Rubinstein, A.: A course in game theory. MIT Press, Cambridge (1994)

    MATH  Google Scholar 

  23. Rosenfeld, A., Pfaltz, J.L.: Distance Functions on Digital Pictures. Pattern Recognition 1, 33–61 (1968)

    Article  MathSciNet  Google Scholar 

  24. Vainsencher, D., Bruckstein, A.M.: On isoperimetrically optimal polyforms. Theoretical Computer Science 406, 146–159 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  25. Wang, D.L., Wang, P.: Discrete Isoperimetric Problems. SIAM Journal of Appl. Math. 32(4), 860–870 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  26. Wuthrich, C.A., Stucki, P.: An algorithm comparison between square- and hexagonal-based grids. Graph. Model Im. Proc. 53(4), 324–339 (1991)

    Article  Google Scholar 

  27. Yong-Kui, L.: The generation of straight lines on hexagonal grids. Comput. Graph. Forum 12(1), 21–25 (1993)

    Article  Google Scholar 

  28. Yong-Kui, L.: The generation of circular arcs on hexagonal grids. Comput. Graph. Forum 12(1), 27–31 (1993)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Nagy, B., Barczi, K. (2011). Isoperimetrically Optimal Polygons in the Triangular Grid. In: Aggarwal, J.K., Barneva, R.P., Brimkov, V.E., Koroutchev, K.N., Korutcheva, E.R. (eds) Combinatorial Image Analysis. IWCIA 2011. Lecture Notes in Computer Science, vol 6636. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21073-0_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21073-0_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21072-3

  • Online ISBN: 978-3-642-21073-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics