Skip to main content

Dynamic Operation of Fiber Optical Transmission Networks

  • Chapter
  • First Online:
  • 1328 Accesses

Part of the book series: Signals and Communication Technology ((SCT))

Abstract

This chapter deals with (online) operation of dynamic fiber optical transmission networks. In the first section the network architecture of an optical core network is described, followed by the presentation of the demand model. Afterwards the concept of constraint-based routing considering physical-layer impairments is explained, and a possible implementation is shown. Furthermore, a heuristic for sparse placement of OEO regenerators is outlined. The section is completed by the presentation of simulation results for physical layer impairment (PLI) aware routing and wavelength assignment in a European reference topology. Beyond that the possible reduction of the required number of regenerators by PLI-aware routing is shown. In Sect. 5.4 a concept of considering physical-layer impairments in transmission systems with higher bit rates and novel modulation formats is sketched. Section 5.5 deals with the reduction of the energy consumption in an optical core network by dynamic adaptation to the traffic load changes, which occur on a daily basis. A summary and a discussion are given at the end of this chapter.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Berthold, J., Saleh, A.A.M., Blair, L., Simmons, J.M.: Optical networking: past present, and future. IEEE/OSA J. Lightw. Technol. 26(9), 1104–1118 (2008)

    Article  Google Scholar 

  2. Gladisch, A., Braun, R.-P., Breuer, D., Erhardt, A., Foisel, H.-M., Jäger, M., Leppla, R., Schneiders, M., Vorbeck, S., Weiershausen, W., Westphal, F.-J.: Evolution of terrestrial optical system and core network architecture. Proc. IEEE 94(5), 869–891 (2006)

    Article  Google Scholar 

  3. ITU-T Recommendation G.8080, Nov 2006

    Google Scholar 

  4. Mannie, E.: Generalized multi-protocol label switching (GMPLS) architecture. IETF Network Working Group, RFC 3945, Oct 2004

    Google Scholar 

  5. Pachnicke, S., Gottwald, E., Krummrich, P., Voges, E.: Transient gain dynamics in Long-Haul transmission systems with electronic EDFA gain control. OSA J. Opt. Netw. 6(9), 1129–1137 (2007)

    Article  Google Scholar 

  6. Pachnicke, S., Gottwald, E., Krummrich, P., Voges, E.: Combined impact of Raman and EDFA transients on Long Haul transmission system performance. European Conference on Optical Communication (ECOC 2007), P074, Berlin, Germany, Sept 2007

    Google Scholar 

  7. Schupke, D., Duhovnikov, S., Meusburger, C.: Guidelines for connection-level performance simulation of optical networks. Technical Report, LKN-TR-5, Institute of Communication Networks, TU München, Jan 2010

    Google Scholar 

  8. Hülsermann, R., Bodamer, S., Barry, M., Betker, A., Gauger, C., Jäger, M., Köhn, M., Späth, J.: A set of typical transport network scenarios for network modeling. ITG-Conference “Photonic Networks”, Leipzig, Germany, May 2004

    Google Scholar 

  9. Dwivedi, A., Wagner, R.E.: Traffic model for USA long-distance optical network. Optical Fiber Communications Conference (OFC), TuK1-1, Mar 2000

    Google Scholar 

  10. COST 266: Pan-European and Trans-American reference networks, http://sndlib.zib.de

  11. Autenrieth, A., Elbers, J.-P., Schmidtke, H.-J., Macchi, M., Rosenzweig, G.: Benefits of integrated packet/circuit/wavelength switches in next-generation optical core networks. Optical Fiber Communications Conference (OFC), NMC4, Los Angeles, Mar 2011

    Google Scholar 

  12. Pawlikowski, K., Joshua Jeong, H.-D., Ruth Lee, J.-S.: On credibility of simulation studies of telecommunication networks. IEEE Comm. Mag. 40(1), 132–139 (2002)

    Article  Google Scholar 

  13. Azodolmolky, S., Klinkowski, M., Marín Tordera, E., Careglio, D., Solé-Pareta, J., Tomkos, I.: A survey on physical layer impairments aware routing and wavelength assignment algorithms in optical networks. Elsevier J. Comput. Netw. 53(7), 926–944 (2009)

    Article  MATH  Google Scholar 

  14. Pachnicke, S., Reichert, J., Spälter, S., Voges, E.: Fast analytical assessment of the signal quality in transparent optical networks. IEEE J. Lightw. Technol. 24(2), 815–824 (2006)

    Article  Google Scholar 

  15. Pachnicke, S., Hecker-Denschlag, N., Spälter, S., Reichert, J., Voges, E.: Experimental verification of fast analytical models for XPM-impaired mixed-fiber transparent optical networks. IEEE Photonics Technol. Lett. 16(5), 1400–1402 (2004)

    Article  Google Scholar 

  16. Pachnicke, S., De Man, E., Spälter, S., Voges, E.: Impact of the inline dispersion compensation map on four wave mixing (FWM)—impaired optical networks. IEEE Photonics Technol. Lett. 17(1), 235–237 (2005)

    Article  Google Scholar 

  17. Pachnicke, S., Gravemann, T., Windmann, M., Voges, E.: Physically constrained routing in 10 Gb/s DWDM networks including fiber nonlinearities and polarization effects. IEEE J. Lightw. Technol. 24(9), 3418–3426 (2006)

    Article  Google Scholar 

  18. Martinez, R., Pinart, C., Cugini, F., Andriolli, N., Valcarenghi, L., Castoldi, P., Wosinska, L., Comellas, J., Junyent, G.: Challenges and requirements for introducing impairment-awareness into the management and control planes of ASON/GMPLS WDM networks. IEEE Comm. Mag. 44(12), 76–85 (2006)

    Article  Google Scholar 

  19. Kissing, J., Gravemann, T., Voges, E.: Analytical probability density function for the Q factor due to PMD and noise. IEEE Photonics Technol. Lett. 15(4), 611–613 (2003)

    Article  Google Scholar 

  20. Pachnicke, S., Paschenda, T., Krummrich, P.: Assessment of a constraint-based routing algorithm for translucent 10 Gb/s DWDM networks considering fiber nonlinearities. OSA J. Opt. Netw. 7(4), 365–377 (2008)

    Article  Google Scholar 

  21. Vasilyev, M., Tomkos, I., Mehendale, M., Rhee, J.-K., Kobyakov, A., Ajgaonkar, M., Tsuda, S., Sharma, M.: Transparent ultra-Long-Haul DWDM networks with broadcast-and-select OADM/OXC architecture. IEEE J. Lightw. Technol. 21(11), 2661–2672 (2003)

    Article  Google Scholar 

  22. Simmons, J.M.: Network design in realistic all-optical backbone networks. IEEE Commun. Mag. 44(11), 88–94 (2006)

    Article  Google Scholar 

  23. Chen, S., Raghavan, S.: The regenerator location problem. Working Paper, Smith School of Business, University of Maryland (2006)

    Google Scholar 

  24. Pachnicke, S., Paschenda, T., Krummrich, P.: Physical impairment-based regenerator placement and routing in translucent optical networks. Optical Fiber Communications Conference (OFC 2008), OWA2, San Diego, USA, Feb 2008

    Google Scholar 

  25. Schupke, D.A., Jäger, M., Hülsermann, R.: Comparison of resilience mechanisms for dynamic services in intelligent optical networks. Design of Reliable Communication Networks (DRCN), Oct 2003

    Google Scholar 

  26. Pachnicke, S., Krummrich, P.: Reduction of the required number of electrical regenerators by physical layer impairment aware regenerator placement and routing. European Conference on Optical Communication (ECOC 2008), Brussels, Belgium, Sept 2008

    Google Scholar 

  27. Breuer, D., Tessmann, H.-J., Gladisch, A., Foisel, H. M., Neumann, G., Reiner, H., Cremer, H.: Measurements of PMD in the installed fiber plant of Deutsche Telekom. IEEE LEOS Summer Topical Meetings, MB2.1, July 2003

    Google Scholar 

  28. Pachnicke, S., Luck, N., Krummrich, P.: Novel physical-layer impairment-aware routing algorithm for translucent optical networks with 43 Gb/s and 107 Gb/s Channels. IEEE International Conference on Transparent Optical Networks (ICTON 2009), Ponta Delgada, Portugal, June 2009

    Google Scholar 

  29. Antona, J. C., Bigo, S., Faure, J.-P.: Nonlinear cumulated phase as a criterion to assess performance of terrestrial WDM systems. Optical Fiber Communications Conference (OFC), WX-5, Anaheim, Mar 2002

    Google Scholar 

  30. Hinton, K., Baliga, J., Ayre, R., Tucker, R. S.: The future Internet—an energy consumption perspective. IEEE OptoElectronics and Communications Conference, Hong Kong, 2009

    Google Scholar 

  31. Baliga, J., Ayre, R., Hinton, K., Sorin, W.V., Tucker, R.S.: Energy consumption in optical IP networks. IEEE J. Lightw. Technol. 27(13), 2391–2403 (2009)

    Article  Google Scholar 

  32. Ramaswami, R., Sivarajan, K.N., Sasaki, G.H.: Optical Networks–A Practical Perspective, 3rd edn. Morgan Kaufmann, Burlington (2010)

    Google Scholar 

  33. Magill, P.: Core photonic networks—where are things heading. European Conference on Optical Communications (ECOC), 4.6.1, Vienna, Sept 2009

    Google Scholar 

  34. Mukherjee, B.: Optical WDM Networks. Springer, Berlin (2006)

    Google Scholar 

  35. Cisco CRS-1 product specification. www.cisco.com/en/US/prod/collateral/routers/ps5763/prod_brochure0900aecd800f8118.pdf. Version 2010

  36. Idzikowski, F.: Power consumption of network elements in IP over WDM networks. TKN Technical Report Series TKN-09-006, Telecommunication Networks Group, Technical University Berlin, 2009

    Google Scholar 

  37. Benes, V.E.: On rearrangeable three-stage connecting networks. Bell Syst. Tech. J. 41, 1481–1492 (1962)

    Google Scholar 

  38. Vazirani, V.V.: Approximation Algorithms. Springer, Berlin (2001)

    Google Scholar 

  39. Borodin, A., El-Yaniv, R.: Online Computation and Competitive Analysis. Cambridge University Press, Cambridge (1998)

    MATH  Google Scholar 

  40. Monti, P., Wiatr, P., Jirattigalachote, A., Wosinska, L.: Trading power savings for blocking probability in dynamically provisioned WDM networks. IEEE International Conference on Transparent Optical Networks (ICTON 2010), Munich, June 2010

    Google Scholar 

  41. Pachnicke, S., Kagba, H., Krummrich, P.: Load adaptive optical-bypassing for reducing core network energy consumption. ITG-Conference “Photonic Networks”, Leipzig, Germany, May 2011

    Google Scholar 

  42. DE-CIX German Internet Exchange (www.decix.de)

  43. Lange, C., Kosiankowski, D., Gerlach, C., Westphal, F.-J., Gladisch, A.: Energy consumption of telecommunication networks. European Conference on Optical Communications (ECOC), 5.5.3, Vienna, Sept 2009

    Google Scholar 

  44. Lange, C., Gladisch, A.: Energy efficiency limits of load adaptive networks. Optical Fiber Communications Conference (OFC), OWY2, San Diego, Mar 2010

    Google Scholar 

  45. Pachnicke, S., Krummrich, P.: Constraint-based routing in path-protected translucent networks considering fiber nonlinearities and polarization mode dispersion. SPIE Asia-Pacific Optical Communications Conference (APOC 2008), Hangzhou, China, Oct 2008

    Google Scholar 

  46. Hülsermann, R., Lange, C., Kosiankowski, D., Gladisch, A.: Analysis of the energy efficiency in IP over WDM networks with load-adaptive operation. ITG-Conference “Photonic Networks”, Leipzig, Germany, May 2011

    Google Scholar 

  47. Hasan, M.M., Farahmand, F., Jue, J.P.: Energy-awareness in dynamic traffic grooming. Optical Fiber Communications Conference (OFC 2010), paper OWY6, San Diego, Mar 2010

    Google Scholar 

  48. Doverspike, R.: Practical aspects of bandwidth-on-demand in optical networks. Optical Fiber Communications Conference (OFC 2007), Panel on Emerging Networks, Service Provider Summit, Anaheim, CA, Mar 2007

    Google Scholar 

  49. Agraz, F., Azodolmolky, S., Angelou, M., Perelló, J., Velasco, L., Spadaro, S., Francescon, A., Saradhi, C.V., Pointurier, Y., Kokkinos, P., Varvarigos, E., Gunkel, M., Tomkos, I.: Experimental demonstration of centralized and distributed impairment-aware control plane schemes for dynamic transparent optical networks. Optical Fiber Communications Conference (OFC 2010), PDPD5, San Diego, Mar 2010

    Google Scholar 

  50. Antona, J.-C., Bigo, S.: Physical design and performance estimation of heterogeneous optical transmission systems. C.R. Physique 9(9–10), 963–984 (2008)

    Article  Google Scholar 

  51. Chiu, A.L., Choudhury, G., Clapp, G., Doverspike, R., Gannett, J.W., Klincewicz, J.G., Li, G., Skoog, R.A., Stand, J., Von Lehmen, A., Xu, D.: Network design and architectures for highly dynamic next-generation IP-over-optical long distance networks. IEEE J. Lightw. Technol. 27(12), 1878–1890 (2009)

    Article  Google Scholar 

  52. Vereecken, W., Van Heddeghem, W., Puype, B., Colle, D., Pickavet, M., Demeester, P.: Optical networks: how much power do they consume and how can we optimize this. European Conference on Optical Communication (ECOC), Mo.1.D.1, Torino, Sept 2010

    Google Scholar 

  53. Kilper, D.C., Neilson, D., Stiliadis, D., Suvakovic, D., Goyal, S.: Fundamental limits on energy use in optical networks. European Conference on Optical Communication (ECOC), Tu.3.D.1, Torino, Sept 2010

    Google Scholar 

  54. Kilper, D.C., Atkinson, G., Korotky, S.K.: Optical transparency and network energy efficiency. IEEE International Conference on Transparent Optical Networks (ICTON 2010), Munich, June 2010

    Google Scholar 

  55. GreenTouch™ consortium (www.greentouch.org)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephan Pachnicke .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pachnicke, S. (2012). Dynamic Operation of Fiber Optical Transmission Networks. In: Fiber-Optic Transmission Networks. Signals and Communication Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21055-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21055-6_5

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21054-9

  • Online ISBN: 978-3-642-21055-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics