Advertisement

Diffusion-Weighted MR Imaging of the Renal and Adrenal Glands

  • Nagaraj Holalkere
  • Stephan Anderson
  • Jorge A. Soto
Chapter

Abstract

DWI with apparent diffusion coefficient (ADC) measurements potentially provides a noninvasive method for discriminating benign from malignant renal and adrenal lesions using molecular criteria. The potential applications of DWI in the evaluation of focal renal masses are lesion detection, and alternative to contrast-enhanced MRI, monitoring response to treatment and differentiation of simple hydronephrosis from pyonephrosis. Malignant lesions tend to show lower ADC values than benign solid and cystic lesions. Furthermore, DWI can be used to differentiate solid renal cell carcinomas (RCCs) from oncocytomas and characterize the histologic subtypes of RCC. Besides, a significant difference between the diffusion properties of clear cell and nonclear cell RCCs has been achieved, which is important in the therapeutic management. The different characteristics and microstructure of the different components of renal parenchyma have been explored with DTI, allowing for accurate differentiation of renal cortex and medulla. There is evidence of reduced ADC values in cases of diffuse renal disease as acute and especially renal chronic failure, ischemia, infection, and inflammatory conditions. Besides, DWI has potential to characterize benign from malignant adrenal lesions by means of ADC measurements. Nevertheless, in the limited available series, there are contradictory results in the capabilities of DWI in the characterization of adrenal masses, with more data favoring the absence of a significant difference between the adenomas and malignant lesions.

Keywords

Renal Cell Carcinoma Apparent Diffusion Coefficient Restricted Diffusion Renal Lesion Adrenal Adenoma 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Further Reading

  1. Bittencourt LK, Matos C, Coutinho AC Jr (2011) Diffusion-weighted magnetic resonance imaging in the upper abdomen: technical issues and clinical applications. Magn Reson Imaging Clin N Am 19(1):111–31PubMedCrossRefGoogle Scholar
  2. Chandarana H, Lee VS, Hecht E et al (2011) Comparison of biexponential and monoexponential model of diffusion weighted imaging in evaluation of renal lesions: preliminary experience. Invest Radiol 46:285–291Google Scholar
  3. Eisenberger U, Thoeny HC, Binser T et al (2010) Evaluation of renal allograft function early after transplantation with diffusion-weighted MR imaging. Eur Radiol 20(6):1374–83PubMedCrossRefGoogle Scholar
  4. Gurses B, Kilickesmez O, Tasdelen N et al. Diffusion tensor imaging of the kidney at 3 Tesla: normative values and repeatability of measurements in healthy volunteers. Diagn Interv Radiol; Nov 25, 2010. doi:  10.4261/1305-3825.DIR.3892-10.1 [Epub ahead of print]
  5. Holalkere NS Belludi C, Gupta A et al (2009) Diffusion-weighted imaging (DWI) versus chemical shift imaging (CSI): a comparative study on MRI characterization of adrenal lesions using receiver operating characteristic curve (ROC) analysis. In: RSNA: 2009; CODE: SSE10-05, Session: Genitourinary (adrenal Glands), Chicago, ILGoogle Scholar
  6. Karadeli E, Ulu EM, Yildirim E et al (2010) Diffusion-weighted MR imaging of kidneys in patients with systemic lupus ­erythematosus: initial experience. Rheumatol Int 30(9):1177–81PubMedCrossRefGoogle Scholar
  7. Karadeli E, Ulu EM, Yilmaz S et al (2009) Diffusion-weighted MRI of the kidneys in patients with familial Mediterranean fever: initial experience. Diagn Interv Radiol 15(4):252–5PubMedGoogle Scholar
  8. Kataoka M, Kido A, Yamamoto A et al (2009) Diffusion tensor imaging of kidneys with respiratory triggering: optimization of parameters to demonstrate anisotropic structures on fraction anisotropy maps. J Magn Reson Imaging 29(3):736–44PubMedCrossRefGoogle Scholar
  9. Kido A, Kataoka M, Yamamoto A et al (2010) Diffusion tensor MRI of the kidney at 3.0 and 1.5 Tesla. Acta Radiol 51(9):1059–63PubMedCrossRefGoogle Scholar
  10. Kilickesmez O, Inci E, Atilla S et al (2009) Diffusion-weighted imaging of the renal and adrenal lesions. J Comput Assist Tomogr 33(6):828–33PubMedCrossRefGoogle Scholar
  11. Kim S, Jain M, Harris AB et al (2009) T1 hyperintense renal lesions: characterization with diffusion-weighted MR imaging versus contrast-enhanced MR imaging. Radiology 251(3):796–807PubMedCrossRefGoogle Scholar
  12. Miller FH, Wang Y, McCarthy RJ et al (2010) Utility of diffusion-weighted MRI in characterization of adrenal lesions. Am J Roentgenol 194(2):179–85CrossRefGoogle Scholar
  13. Notohamiprodjo M, Reiser MF, Sourbron SP (2010) Diffusion and perfusion of the kidney. Eur J Radiol 76(3):337–47PubMedCrossRefGoogle Scholar
  14. Paudyal B, Paudyal P, Tsushima Y et al (2010) The role of the ADC value in the characterisation of renal carcinoma by diffusion-weighted MRI. Br J Radiol 83(988):336–43PubMedCrossRefGoogle Scholar
  15. Rosenkrantz AB, Niver BE, Fitzgerald EF et al (2010) Utility of the apparent diffusion coefficient for distinguishing clear cell renal cell carcinoma of low and high nuclear grade. Am J Roentgenol 195(5):W344–51CrossRefGoogle Scholar
  16. Sandrasegaran K, Sundaram CP, Ramaswamy R et al (2010) Usefulness of diffusion-weighted imaging in the evaluation of renal masses. Am J Roentgenol 194(2):438–45CrossRefGoogle Scholar
  17. Takenaka D, Ohno Y, Matsumoto K et al (2009) Detection of bone metastases in non-small cell lung cancer patients: comparison of whole-body diffusion-weighted imaging (DWI), whole-body MR imaging without and with DWI, whole-body FDG-PET/CT, and bone scintigraphy. J Magn Reson Imaging 30(2):298–308PubMedCrossRefGoogle Scholar
  18. Taouli B, Thakur RK, Mannelli L et al (2009) Renal lesions: characterization with diffusion-weighted imaging versus contrast-enhanced MR imaging. Radiology 251(2):398–407PubMedCrossRefGoogle Scholar
  19. Thoeny HC, Binser T, Roth B et al (2009) Noninvasive assessment of acute ureteral obstruction with diffusion-weighted MR imaging: a prospective study. Radiology 252(3):721–8PubMedCrossRefGoogle Scholar
  20. Thoeny HC, Grenier N (2010) Science to practice: can diffusion-weighted MR imaging findings be used as biomarkers to monitor the progression of renal fibrosis? Radiology 255(3):667–8PubMedCrossRefGoogle Scholar
  21. Togao O, Doi S, Kuro-o M et al (2010) Assessment of renal fibrosis with diffusion-weighted MR imaging: study with murine model of unilateral ureteral obstruction. Radiology 255(3):772–80PubMedCrossRefGoogle Scholar
  22. Tsushima Y, Takahashi-Taketomi A et al (2009) Diagnostic utility of diffusion-weighted MR imaging and apparent diffusion coefficient value for the diagnosis of adrenal tumors. J Magn Reson Imaging 29(1):112–7PubMedCrossRefGoogle Scholar
  23. Uhl M, Altehoefer C, Kontny U et al (2002) MRI-diffusion imaging of neuroblastomas: first results and correlation to histology. Eur Radiol 12(9):2335–2338PubMedGoogle Scholar
  24. Wang H, Cheng L, Zhang X et al (2010) Renal cell carcinoma: diffusion-weighted MR imaging for subtype differentiation at 3.0 T. Radiology 257(1):135–43PubMedCrossRefGoogle Scholar
  25. Xu X, Fang W, Ling H et al (2010) Diffusion-weighted MR imaging of kidneys in patients with chronic kidney disease: initial study. Eur Radiol 20(4):978–83PubMedCrossRefGoogle Scholar
  26. Xu Y, Wang X, Jiang X (2007) Relationship between the renal apparent diffusion coefficient and glomerular filtration rate: preliminary experience. J Magn Reson Imaging 26(3):678–681PubMedCrossRefGoogle Scholar
  27. Xu JJ, Xiao WB, Zhang L et al (2010) [Value of diffusionweighted MR imaging in diagnosis of acute rejection after renal transplantation]. Zhejiang Da Xue Xue Bao Yi Xue Ban 39(2):163–167Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Nagaraj Holalkere
    • 1
  • Stephan Anderson
    • 1
  • Jorge A. Soto
    • 1
  1. 1.Radiology DepartmentBoston University School of MedicineBostonUSA

Personalised recommendations