Advertisement

Whole-Body Applications of DWI

  • Joan C. VilanovaEmail author
  • Sandra Baleato
  • Joaquim Barceló
  • Antonio Luna
Chapter

Abstract

DWI has revealed great potential in cancer and bone marrow imaging of the body. Whole-body DWI is a recent application, performing multiple stations and a composite image of the entire body. The true utility of WB-DWI has shown the potential and clinical values of this emerging technique for oncologic as well as for nononcologic applications. A complete WB-MRI protocol with standard sequences, DWI, and dynamic 3D contrast-enhanced acquisitions can be performed in less than 40 min of examination. WB-DWI has focused on the detection of osseous metastases in patients with primary malignancies that had the potential to metastasize to the skeletal system and multiple myeloma, and also in the evaluation of the therapeutic response in human bone marrow. WB-DWI is superior to bone scan and PET in the evaluation of bone marrow tumoral involvement. WB-DWI provides also additional information of the extraskeletal areas. DWI is useful to quantify the results with the ADC values, with several clinical applications such as the differentiation between acute benign fractures from malignant and infectious lesions. Further research, comparing and evaluating complementary roles of PET and WB-DWI, is still needed

Keywords

Multiple Myeloma Bone Metastasis Restricted Diffusion Plexiform Neurofibroma Stir Sequence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Further Reading

  1. Balliu E, Vilanova JC, Peláez I et al (2009) Diagnostic value of apparent diffusion coefficients to differentiate benign from malignant vertebral bone marrow lesions. Eur J Radiol 69(3):560–566PubMedCrossRefGoogle Scholar
  2. Barcelo J, Vilanova JC, Riera E et al (2007) Diffusion-weighted whole-body MRI (virtual PET) in screening for osseous metastases. Radiología 49:407–415PubMedCrossRefGoogle Scholar
  3. Baur A, Reiser MF (2000) Diffusion-weighted imaging of the musculoskeletal system in humans. Skeletal Radiol 29:555–562PubMedCrossRefGoogle Scholar
  4. Bley TA, Wieben O, Uhl M (2009) Diffusion-weighted MR imaging in musculoskeletal radiology: applications in trauma, tumors, and inflammation. Magn Reson Imaging Clin N Am 17:263–275PubMedCrossRefGoogle Scholar
  5. Boussel L, Marchand B, Blineau N et al (2002) Imaging of osteoarticular tuberculosis. J Radiol 83(9 Pt 1):1025–1034PubMedGoogle Scholar
  6. Cai W, Kassarjian A, Bredella MA et al (2009) Tumor burden in patients with neurofibromatosis types 1 and 2 and schwannomatosis: determination on whole-body MR images. Radiology 250(3):665–673PubMedCrossRefGoogle Scholar
  7. Chan JH, Peh WC, Tsui EY et al (2002) Acute vertebral body compression fractures: discrimination between benign and malignant causes using apparent diffusion coefficients. Br J Radiol 75(891):207–214PubMedGoogle Scholar
  8. Chen W, Jian W, Li H et al (2010) Whole-body diffusion-weighted imaging vs. FDG-PET for the detection of non-small-cell lung cancer. How do they measure up? Magn Reson Imaging 28:613–620PubMedCrossRefGoogle Scholar
  9. Choi EK, Kim JK, Choi HJ et al (2009) Node-by-node correlation between MR and PET/CT in patients with uterine cervical cancer: diffusion-weighted imaging versus size-based criteria on T2WI. Eur Radiol 19:2024–2032PubMedCrossRefGoogle Scholar
  10. Dietrich O, Biffar A, Reiser MF et al (2009) Diffusion-weighted imaging of bone marrow. Semin Musculoskelet Radiol 13:134–144PubMedCrossRefGoogle Scholar
  11. Engin G, Acunas¸ B, Acunas¸ G et al (2000) Imaging of extrapulmonary tuberculosis. Radiographics 20(2):471–488PubMedGoogle Scholar
  12. Gu TF, Xiao XL, Sun F et al (2008) Diagnostic value of whole body diffusion weighted imaging for screening primary tumors of patients with metastases. Chin Med Sci J 23(3):145–150PubMedCrossRefGoogle Scholar
  13. Herneth AM, Friedrich K, Weidekamm C et al (2005) Diffusion weighted imaging of bone marrow pathologies. Eur J Radiol 55(1):74–83PubMedCrossRefGoogle Scholar
  14. Heusner TA, Kuemmel S, Hamami ME et al (2010) Diagnostic value of DWI MRI compared to FDG PET/CT for whole body breast cancer staging. Eur J Nucl Med Mol Imaging 37(6):1077–1086PubMedCrossRefGoogle Scholar
  15. Huang MQ, Pickup S, Nelson DS et al (2008) Monitoring response to chemotherapy of non-Hodgkin’s lymphoma xenografts by T(2)-weighted and diffusion-weighted MRI. NMR Biomed 21(10):1021–1029PubMedCrossRefGoogle Scholar
  16. Karchevsky M, Babb JS, Schweitzer ME (2008) Can diffusion-weighted imaging be used to differentiate benign from pathologic fractures? A meta-analysis. Skeletal Radiol 37(9):791–795PubMedCrossRefGoogle Scholar
  17. Ketelsen D, Röthke M, Aschoff P et al (2008) Detection of bone metastasis of prostate cancer –comparison of whole-body MRI and bone scintigraphy. Rofo 180(8):746–752PubMedCrossRefGoogle Scholar
  18. Kwee TC, Takahara T, Ochiai R et al (2009) Whole-body diffusion-weighted magnetic resonance imaging. Eur J Radiol 70(3):409–417PubMedCrossRefGoogle Scholar
  19. Kwee TC, Takahara T, Ochiai R et al (2010) Complementary roles of whole-body diffusion-weighted MRI and 18F-FDG PET: the state of the art and potential applications. J Nucl Med 51(10):1549–1558PubMedCrossRefGoogle Scholar
  20. Kwee TC, Takahara T, Vermoolen MA et al (2010) Whole-body diffusion-weighted imaging for staging malignant lymphoma in children. Pediatr Radiol 40(10):1592–1602PubMedCrossRefGoogle Scholar
  21. Kwee TC, van Ufford HM, Beek FJ et al (2009) Whole-body MRI, including diffusion-weighted imaging, for the initial staging of malignant lymphoma: comparison to computed tomography. Invest Radiol 44(10):683–690PubMedCrossRefGoogle Scholar
  22. Laurent V, Trausch G, Bruot O et al (2010) Comparative study of two whole-body imaging techniques in the case of melanoma metastases: advantages of multicontrast MRI examination including a diffusion-weighted sequence in comparison with PET-CT. Eur J Radiol 75(3):376–383PubMedCrossRefGoogle Scholar
  23. Lecouvet FE, Geukens D, Stainier A et al (2007) Magnetic resonance imaging of the axial skeleton for detecting bone metastases in patients with high-risk prostate cancer: diagnostic and cost-effectiveness and comparison with current detection strategies. J Clin Oncol 25(22):3281–3287PubMedCrossRefGoogle Scholar
  24. Lee KC, Bradley DA, Hussain M et al (2007) A feasibility study evaluating the functional diffusion map as a predictive imaging biomarker for detection of treatment response in a patient with metastatic prostate cancer to the bone. Neoplasia 9(12):1003–1011PubMedCrossRefGoogle Scholar
  25. Lin C, Luciani A, Itti E et al (2010) Whole-body diffusion-weighted magnetic resonance imaging with apparent diffusion coefficient mapping for staging patients with diffuse large B-cell lymphoma. Eur Radiol 20(8):2027–2038PubMedCrossRefGoogle Scholar
  26. Lisbona R, Derbekyan V, Novales-Díaz J, Veksler A (1993) Gallium-67 scintigraphy in tuberculous and nontuberculous infectious spondylitis. J Nucl Med 34(5):853–859PubMedGoogle Scholar
  27. Low RN (2009) Diffusion-weighted MR imaging for whole body metastatic disease and lymphadenopathy. Magn Reson Imaging Clin N Am 17(2):245–261PubMedCrossRefGoogle Scholar
  28. Luboldt W, Küfer R, Blumstein N et al (2008) Prostate carcinoma: diffusion-weighted imaging as potential alternative to conventional MR and 11C-choline PET/CT for detection of bone metastases. Radiology 249(3):1017–1025PubMedCrossRefGoogle Scholar
  29. Luna A, Ribes R, Caro P et al (2006) MRI of focal splenic lesions without and with dynamic gadolinium enhancement. Am J Roentgenol 186(6):1533–1547CrossRefGoogle Scholar
  30. Luna A, Sanchez-Gonzalez J, Caro P (2011) DWI of the chest. Magn Reson Imaging Clin N Am 19:69–94PubMedCrossRefGoogle Scholar
  31. Mori T, Nomori H, Ikeda K et al (2008) Diffusion-weighted magnetic resonance imaging for diagnosing malignant pulmonary nodules/masses: comparison with positron emission tomography. J Thorac Oncol 3:358–364PubMedCrossRefGoogle Scholar
  32. Murtz P, Krautmacher C, Traber F, Gieseke J, Schild HH, Willinek WA (2007) Diffusion-weighted whole-body MR imaging with background body signal suppression: a feasibility study at 3.0 Tesla. Eur Radiol 17:3031–3037PubMedCrossRefGoogle Scholar
  33. Nakanishi K, Kobayashi M, Nakaguchi K et al (2007) Whole-body MRI for detecting metastatic bone tumor: diagnostic value of diffusion-weighted images. Magn Reson Med Sci 6:147–155PubMedCrossRefGoogle Scholar
  34. Niwa T, Aida N, Fujita K et al (2008) Diffusion-weighted imaging of retroperitoneal malignant peripheral nerve sheath tumor in a patient with neurofibromatosis type 1. Magn Reson Med Sci 7(1):49–53PubMedCrossRefGoogle Scholar
  35. Nomori H, Mori T, Ikeda K et al (2008) Diffusion-weighted magnetic resonance imaging can be used in place of positron emission tomography for N staging of non-small cell lung cancer with fewer false-positive results. J Thorac Cardiovasc Surg 135(4):816–822PubMedCrossRefGoogle Scholar
  36. Ohba Y, Nomori H, Mori T et al (2009) Is diffusion-weighted magnetic resonance imaging superior to positron emission tomography with fludeoxyglucose F 18 in imaging non-small cell lung cancer? J Thorac Cardiovasc Surg 138(2):439–445PubMedCrossRefGoogle Scholar
  37. Ohno Y, Koyama H, Onishi Y et al (2008) Non-small cell lung cancer: whole-body MR examination for M-stage assessment-utility for whole-body diffusion-weighted imaging compared with integrated FDG-PET/CT. Radiology 248(2):643–654PubMedCrossRefGoogle Scholar
  38. Ono K, Ochiai R, Yoshida T et al (2009) Comparison of diffusion-weighted MRI and 2-[fluorine-18]-fluoro-2-deoxy-D-glucose positron emission tomography (FDGPET) for detecting primary colorectal cancer and regional lymph node metastases. J Magn Reson Imaging 29:336–340PubMedCrossRefGoogle Scholar
  39. Oztekin O, Ozan E, Hilal Adibelli Z et al (2009) SSH-EPI diffusion-weighted MR imaging of the spine with low b values: is it useful in differentiating malignant metastatic tumor infiltration from benign fracture edema? Skeletal Radiol 38(7):651–658PubMedCrossRefGoogle Scholar
  40. Padhani AR, Koh DM (2011) Diffusion MR imaging for monitoring of treatment response. Magn Reson Imaging Clin N Am 19(1):181–209PubMedCrossRefGoogle Scholar
  41. Pui MH, Mitha A, Rae WI et al (2005) Diffusion-weighted magnetic resonance imaging of spinal infection and malignancy. J Neuroimaging 15(2):164–170PubMedGoogle Scholar
  42. Reischauer C, Froehlich JM, Koh DM et al (2010) Bone metastases from prostate cancer: assessing treatment response by using diffusion-weighted imaging and functional diffusion maps – initial observations. Radiology 257(2):523–531PubMedCrossRefGoogle Scholar
  43. Schmidt GP, Reiser MF, Baur-Melnyk A (2009) Whole-body imaging of bone marrow. Semin Musculoskelet Radiol 13(2):120–133PubMedCrossRefGoogle Scholar
  44. Schnapauff D, Zeile M, Niederhagen MB et al (2009) Diffusion-weighted echo-planar magnetic resonance imaging for the assessment of tumor cellularity in patients with soft-tissue sarcomas. J Magn Reson Imaging 29(6):1355–1359PubMedCrossRefGoogle Scholar
  45. Sommer G, Klarhöfer M, Lenz C et al (2011) Signal characteristics of focal bone marrow lesions in patients with multiple myeloma using whole body T1w-TSE, T2w-STIR and diffusion-weighted imaging with background suppression. Eur Radiol 21(4):857–862PubMedCrossRefGoogle Scholar
  46. Stecco A, Romano G, Negru M et al (2009) Whole-body diffusion-weighted magnetic resonance imaging in the staging of oncological patients: comparison with positron emission tomography computed tomography (PET-CT) in a pilot study. Radiol Med (Torino) 114:11–17CrossRefGoogle Scholar
  47. Takenaka D, Ohno Y, Matsumoto K et al (2009) Detection of bone metastases in nonsmall cell lung cancer patients: comparison of whole-body diffusion-weighted imaging (DWI), whole-body MR imaging without and with DWI, wholebody FDG-PET/CT, and bone scintigraphy. J Magn Reson Imaging 30:298–308PubMedCrossRefGoogle Scholar
  48. Thoeny HC, Triantafyllou M, Birkhaeuser FD et al (2009) Combined ultrasmall superparamagnetic particles of iron oxide-enhanced and diffusion-weighted magnetic resonance imaging reliably detect pelvic lymph node metastases in normal-sized nodes of bladder and prostate cancer patients. Eur Urol 55(4):761–769PubMedCrossRefGoogle Scholar
  49. Vilanova JC, Barcelo J (2008) Diffusion-weighted whole-body MR screening. Eur J Radiol 67:440–447PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Joan C. Vilanova
    • 1
    Email author
  • Sandra Baleato
    • 2
  • Joaquim Barceló
    • 3
  • Antonio Luna
    • 4
  1. 1.Department of Radiology, Clínica Girona-Hospital Sta. CaterinaUniversity of GironaGironaSpain
  2. 2.Department of RadiologyComplexo Hospitalario Universitario de SantiagoSantiago de CompostelaSpain
  3. 3.Department of RadiologyClínica Girona-Hospital Sta. CaterinaGironaSpain
  4. 4.MRI sectionClínica Las Nieves, SERCOSAJaénSpain

Personalised recommendations