Offsetting Revolution Surfaces

  • Fernando San Segundo
  • J. Rafael Sendra
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6301)


In this paper, first, we provide a resultant-based implicitization method for revolution surfaces, generated by non necessarily rational curves. Secondly, we analyze the offsetting problem for revolution surfaces, proving that the offsetting and the revolution constructions are commutative. Finally, as a consequence of this, the (total and partial) degree formulas for the generic offset to an irreducible plane curve, given in our previous papers, are extended to the case of offsets to surfaces of revolution.


offset revolution surface implicit equation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Agoston, M.K.: Computer Graphics and Geometric Modeling: Implementation and Algorithms. Springer, Heidelberg (2005)zbMATHGoogle Scholar
  2. 2.
    Arrondo, E., Sendra, J., Sendra, J.R.: Parametric generalized offsets to hypersurfaces. Journal of Symbolic Computation 23(2-3), 267–285 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Cox, D.A., Little, J.B., O’Shea, D.: Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra, 2nd edn. Springer, Heidelberg (1997)zbMATHGoogle Scholar
  4. 4.
    Farin, G.E.: Curves and Surfaces for CAGD: A Practical Guide. Morgan Kaufmann, San Francisco (2001)Google Scholar
  5. 5.
    Harris, J.: Algebraic Geometry: A First Course. Springer, Heidelberg (1992)CrossRefzbMATHGoogle Scholar
  6. 6.
    Patrikalakis, N.M., Maekawa, T.: Shape Interrogation for Computer Aided Design and Manufacturing. Springer, Heidelberg (2002)zbMATHGoogle Scholar
  7. 7.
    San Segundo, F., Sendra, J.R.: Degree formulae for offset curves. J. Pure Appl. Algebra 195(3), 301–335 (2005), doi:10.1016/j.jpaa.2004.08.026MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    San Segundo, F., Sendra, J.R.: The offset degree problem for surfaces of revolution. In: Proceedings of the XIth Encuentro de Algebra Computacional y Aplicaciones(EACA 2008), Universidad de Granada, pp. 65–68 (2008)Google Scholar
  9. 9.
    San Segundo, F., Sendra, J.R.: Partial degree formulae for plane offset curves. Journal of Symbolic Computation 44(6), 635–654 (2009), doi:10.1016/j.jsc.2008.10.002MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Sendra, J.R., Sendra, J.: Algebraic analysis of offsets to hypersurfaces. Mathematische Zeitschrift 234(4), 697–719 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Sendra, J.R., Winkler, F., Pérez-Díaz, S.: Rational Algebraic Curves—A Computer Algebra Approach. Springer, Heidelberg (2007)zbMATHGoogle Scholar
  12. 12.
    van der Waerden, B.L.: Algebra. Springer, Heidelberg (2003)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Fernando San Segundo
    • 1
  • J. Rafael Sendra
    • 1
  1. 1.Depto. de MatemáticasUniversidad de AlcaláMadridSpain

Personalised recommendations