On the Heilbronn Optimal Configuration of Seven Points in the Square

  • Zhenbing Zeng
  • Liangyu Chen
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6301)


In this paper, we prove that for any seven points in a unit square there exist three points whose area is not greater than a constant h 7 = 0.083859... as conjectured by Francesc Comellas and J. Luis A. Yebra in 2002.


Heilbronn Problem Combinatorial Geometry Automated Deduction 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aichholzer, O., Aurenhammer, F., Krasser, H.: Enumerating order types for small point sets with applications. Order 19(3), 265–281 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Aichholzer, O., Krasser, H.: Abstract order type extension and new results on the rectilinear crossing number. Computational Geometry: Theory and Applications, Special Issue on the 21st European Workshop on Computational Geometry 36(1), 2–15 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Comellas, F., Yebra, J.L.A.: New lower bounds for heilbronn numbers. Electr. J. Comb. 9(6), 1–10 (2002)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Dress, A.W.M., Yang, L., Zeng, Z.: Heilbronn problem for six points in a planar convex body. In: Combinatorics and Graph Theory 1995, vol. 1 (Hefei), pp. 97–118. World Sci. Publishing, Singapore (1995)Google Scholar
  5. 5.
    Goldberg, M.: Maximizing the smallest triangle made by n points in a square. Math. Magazine 45(3), 135–144 (1972)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Yang, L., Zeng, Z.: Heilbronn problem for seven points in a planar convex body. In: Dingzhu, D., Pardalos, P.M. (eds.) Minimax and Applications (1995)Google Scholar
  7. 7.
    Yang, L., Zhang, J., Zeng, Z.: On exact values of heilbronn numbers for triangular regions. Tech. Rep. 91-098, Universität Bielefeld (1991)Google Scholar
  8. 8.
    Yang, L., Zhang, J., Zeng, Z.: On goldberg’s conjecture: Computing the first several heilbronn numbers. Tech. Rep. 91-074, Universität Bielefeld (1991)Google Scholar
  9. 9.
    Yang, L., Zhang, J., Zeng, Z.: A conjecture on the first several heilbronn numbers and a computation. Chinese Ann. Math. Ser. A, 13, 503–515 (1992)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Zeng, Z., Shan, M.: Semi-mechanization method for an unsolved optimization problem in combinatorial geometry. In: Proceedings of the 2007 ACM Symposium on Applied Computing, pp. 762–766. ACM, New York (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Zhenbing Zeng
    • 1
  • Liangyu Chen
    • 1
  1. 1.Shanghai Key Laboratory of Trustworthy ComputingEast China Normal UniversityShanghaiChina

Personalised recommendations