Advertisement

Automatic Segmentation of Left Atrial Scar from Delayed-Enhancement Magnetic Resonance Imaging

  • Rashed Karim
  • Aruna Arujuna
  • Alex Brazier
  • Jaswinder Gill
  • C. Aldo Rinaldi
  • Mark O’Neill
  • Reza Razavi
  • Tobias Schaeffter
  • Daniel Rueckert
  • Kawal S. Rhode
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6666)

Abstract

Delayed-enhancement magnetic resonance imaging is an effective technique for imaging left atrial (LA) scars both pre- and post- radio-frequency ablation for the treatment of atrial fibrillation. Existing techniques for LA scar segmentation require expert manual interaction making them tedious and prone to high observer variability. In this paper, we propose a novel automatic segmentation algorithm for segmenting LA scar based on a probabilistic tissue intensity model. This is implemented as a Markov random field-based energy formulation and solved using graph-cuts. It was evaluated against an existing semi-automatic approach and expert manual segmentations using 9 patient data sets. Surface representations were used to compare the methods. The segmented LA scar was expressed as a percentage of the total LA surface. Statistical analysis showed that the novel algorithm was not significantly different to the manual method and that it compared more favorably with this than the semi-automatic approach.

Keywords

delayed enhancement MRI atrial fibrillation scar segmentation graph-cuts Markov random fields 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Peters, D.C., Wylie, J.V., Hauser, T.H., Kissinger, K.V., Botnar, R.M., Essebag, V., Josephson, M.E., Manning, W.J.: Detection of pulmonary vein and left atrial scar after catheter ablation with three-dimensional navigator-gated delayed enhancement MR imaging: initial experience. Radiology 243(3), 690–695 (2007)CrossRefGoogle Scholar
  2. 2.
    McGann, C.J., Kholmovski, E.G., Oakes, R.S., Blauer, J.J., Daccarett, M., Segerson, N., Airey, K.J., Akoum, N., Fish, E., Badger, T.J., DiBella, E.V., Parker, D., MacLeod, R.S., Marrouche, N.F.: New magnetic resonance imaging-based method for defining the extent of left atrial wall injury after the ablation of atrial fibrillation. J. Am. Coll. Cardiol. 52(15), 1263–1271 (2008)CrossRefGoogle Scholar
  3. 3.
    Knowles, B.R., Caulfield, D., Cooklin, M., Rinaldi, C.A., Gill, J., Bostock, J., Razavi, R., Schaeffter, T., Rhode, K.S.: 3-D visualization of acute RF ablation lesions using MRI for the simultaneous determination of the patterns of necrosis and edema. IEEE Trans. Biomed. Eng. 57(6), 1467–1475 (2010)CrossRefGoogle Scholar
  4. 4.
    Reddy, V.Y., Schmidt, E.J., Holmvang, G., Fung, M.: Arrhythmia recurrence after atrial fibrillation ablation: Can magnetic resonance imaging identify gaps in atrial ablation lines? Journal of Cardiovascular Electrophysiology 19(4), 434–437 (2008)CrossRefGoogle Scholar
  5. 5.
    Oakes, R.S., Badger, T.J., Kholmovski, E.G., Akoum, N., Burgon, N.S., Fish, E.N., Blauer, J.J., Rao, S.N., DiBella, E.V., Segerson, N.M., Daccarett, M., Windfelder, J., McGann, C.J., Parker, D., MacLeod, R.S., Marrouche, N.F.: Detection and quantification of left atrial structural remodeling with delayed-enhancement magnetic resonance imaging in patients with atrial fibrillation. Circulation 119(13), 1758–1767 (2009)CrossRefGoogle Scholar
  6. 6.
    Reumann, M., Bohnert, J., Seemann, G., Osswald, B., Dössel, O.: Preventive ablation strategies in a biophysical model of atrial fibrillation based on realistic anatomical data. IEEE Trans. Biomed. Eng. 55(2 Pt 1), 399–406 (2008)CrossRefGoogle Scholar
  7. 7.
    Peters, J., Ecabert, O., Meyer, C., Schramm, H., Kneser, R., Groth, A., Weese, J.: Automatic whole heart segmentation in static magnetic resonance image volumes. Med. Image Comput. Comput. Assist. Interv. 10(Pt 2), 402–410 (2007)Google Scholar
  8. 8.
    Schnabel, J.A., Rueckert, D., Quist, M., Blackall, J.M., Castellano-Smith, A.D., Hartkens, T., Penney, G.P., Hall, W.A., Liu, H., Truwit, C.L., Gerritsen, F.A., Hill, D.L.G., Hawkes, D.J.: A generic framework for non-rigid registration based on non-uniform multi-level free-form deformations. Med. Image Comput. Comput. Assist. Interv. 4, 573–581 (2001)MATHGoogle Scholar
  9. 9.
    Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via graph cuts. IEEE Transactions on Pattern Analysis and Machine Intelligence 23(11), 1222–1239 (2002)CrossRefGoogle Scholar
  10. 10.
    Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, Series B (Methodological) 39(1), 1–38 (1977)MathSciNetMATHGoogle Scholar
  11. 11.
    Rousseeuw, P.J., Leroy, A.M.: Robust regression and outlier detection. Wiley Series in Probability and Statistics. John Wiley & Sons Inc., Chichester (1987)CrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Rashed Karim
    • 1
  • Aruna Arujuna
    • 1
    • 2
  • Alex Brazier
    • 1
  • Jaswinder Gill
    • 1
    • 2
  • C. Aldo Rinaldi
    • 1
    • 2
  • Mark O’Neill
    • 1
    • 2
  • Reza Razavi
    • 1
    • 2
  • Tobias Schaeffter
    • 1
  • Daniel Rueckert
    • 3
  • Kawal S. Rhode
    • 1
  1. 1.Division of Imaging Sciences and Biomedical EngineeringKing’s College LondonUK
  2. 2.Department of CardiologyGuy’s and St. Thomas’ Hospitals NHS TrustLondonUK
  3. 3.Department of ComputingImperial College LondonLondonUK

Personalised recommendations