Advertisement

Cardiac Deformation from Electro-Anatomical Mapping Data: Application to Scar Characterization

  • A. R. Porras
  • G. Piella
  • Oscar Cámara
  • E. Silva
  • D. Andreu
  • A. Berruezo
  • A. F. Frangi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6666)

Abstract

We propose in this paper a new way of calculating an endocardial end-systolic deformation parameter from electro-anatomical data acquired intra-operatively during electrophysiology interventions. The estimated parameter is then used to study deformation in regions with different viability properties: scar, border zone and normal myocardial tissue. These regions are defined based on electrophysiological data acquired with a contact mapping system, specifically with the bipolar voltage maps and a set of routinely used thresholds. The obtained results when applying our methodology on a set of 8 cases show statistically significant differences between the average deformation values of the scar, border zone and normal myocardial tissue areas, thus demonstrating the feasibility of detecting changes in deformation between normal and non-healthy tissue from electro-anatomical maps. Nevertheless, although low deformation regions more often correspond to non-healthy tissue, deformation is not an accurate indicator of viability abnormalities.

Keywords

Border Zone Persistent Left Superior Vena Bipolar Voltage Cardiac Resynchronization Therapy Patient Electromechanical Mapping 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Svenson, W.G.: Ventricular scars and ventricular tachycardia. Transactions of the American Clinical and Climatological Association 120, 403–412 (2009)Google Scholar
  2. 2.
    de Bakker, J., van Capelle, F., Janse, M., Tasseron, S., Vermeulen, J., de Jonge, N., Lahpor, J.: Slow conduction in the infarcted human heart. ’zigzag’ course of activation. Circulation 88(3), 915–926 (1993)CrossRefGoogle Scholar
  3. 3.
    Duckett, S.G., Ginks, M., Shetty, A.K., Knowles, B.R., Totman, J.J., Chiribiri, A., Ma, Y.L., Razavi, R., Schaeffter, T., Carr-White, G., Rhode, K., Rinaldi, C.A.: Realtime fusion of cardiac magnetic resonance imaging and computed tomography venography with x-ray fluoroscopy to aid cardiac resynchronisation therapy implantation in patients with persistent left superior vena cava. Europace (2010)Google Scholar
  4. 4.
    Botker, H.E., Lassen, J.F., Hermansen, F., Wiggers, H., Sogaard, P., Kim, W.Y., Bottcher, M., Thuesen, L., Pedersen, A.K.: Electromechanical mapping for detection of myocardial viability in patients with ischemic cardiomyopathy. Circulation 103, 1631–1637 (2001)CrossRefGoogle Scholar
  5. 5.
    Camara, O., Oeltze, S., De Craene, M., Sebastian, R., Silva, E., Tamborero, D., Mont, L., Sitges, M., Bijnens, B.H., Frangi, A.F.: Cardiac motion estimation from intracardiac electrical mapping data: Identifying a septal flash in heart failure. In: Ayache, N., Delingette, H., Sermesant, M. (eds.) FIMH 2009. LNCS, vol. 5528, pp. 21–29. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  6. 6.
    Psaltis, P., Worthley, S.: Endoventricular electromechanical mapping the diagnostic and therapeutic utility of the noga xp cardiac navigation system. Journal of Cardiovascular Translational Research 2, 48–62 (2009)CrossRefGoogle Scholar
  7. 7.
    Ben-Haim, S., Osadchy, D., Schuster, I., Gepstein, L., Hayam, G., Josephson, M.: Nonfluoroscopic, in vivo navigation and mapping technology. Nature Medicine 2(12), 1393–1395 (1996)CrossRefGoogle Scholar
  8. 8.
    Gorcsan, John, I.: Echocardiographic Strain Imaging for Myocardial Viability: An Improvement Over Visual Assessment? Circulation 112(25), 3820–3822 (2005)Google Scholar
  9. 9.
    Klemm, H., Ventura, R., Franzen, O., Baldus, S., Mortensen, K., Risius, T., Willems, S.: Simultaneous mapping of activation and motion timing in the healthy and chronically ischemic heart. Heart Rhythm 3(7), 781–788 (2006)CrossRefGoogle Scholar
  10. 10.
    Dickfeld, T., Lei, P., Dilsizian, V., Jeudy, J., Dong, J., Voudouris, A., Peters, R., Saba, M., Shekhar, R., Shorofsky, S.: Integration of three-dimensional scar maps for ventricular tachycardia ablation with positron emission tomography-computed tomography. JACC: Cardiovascular Imaging 1(1), 73–82 (2008)Google Scholar
  11. 11.
    Samady, H., Liu, Y., Choi, C., Ragosta, M., Pfau, S., Cleman, M., Powers, E., Kramer, C., Wackers, F., Beller, G., Watson, D.: Electromechanical mapping for detecting myocardial viability and ischemia in patients with severe ischemic cardiomyopathy. The American Journal of Cardiology 91(7), 807–811 (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • A. R. Porras
    • 1
  • G. Piella
    • 1
  • Oscar Cámara
    • 1
  • E. Silva
    • 2
  • D. Andreu
    • 2
  • A. Berruezo
    • 2
  • A. F. Frangi
    • 1
    • 3
  1. 1.CISTIB - Universitat Pompeu i Fabra, CIBER-BBNBarcelonaSpain
  2. 2.Hospital ClinicIDIBAPS, Universitat de BarcelonaBarcelonaSpain
  3. 3.Institucio Catalana de Recerca i Estudis Avanats (ICREA)BarcelonaSpain

Personalised recommendations