Skip to main content

Cardiac Deformation from Electro-Anatomical Mapping Data: Application to Scar Characterization

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6666))

Abstract

We propose in this paper a new way of calculating an endocardial end-systolic deformation parameter from electro-anatomical data acquired intra-operatively during electrophysiology interventions. The estimated parameter is then used to study deformation in regions with different viability properties: scar, border zone and normal myocardial tissue. These regions are defined based on electrophysiological data acquired with a contact mapping system, specifically with the bipolar voltage maps and a set of routinely used thresholds. The obtained results when applying our methodology on a set of 8 cases show statistically significant differences between the average deformation values of the scar, border zone and normal myocardial tissue areas, thus demonstrating the feasibility of detecting changes in deformation between normal and non-healthy tissue from electro-anatomical maps. Nevertheless, although low deformation regions more often correspond to non-healthy tissue, deformation is not an accurate indicator of viability abnormalities.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Svenson, W.G.: Ventricular scars and ventricular tachycardia. Transactions of the American Clinical and Climatological Association 120, 403–412 (2009)

    Google Scholar 

  2. de Bakker, J., van Capelle, F., Janse, M., Tasseron, S., Vermeulen, J., de Jonge, N., Lahpor, J.: Slow conduction in the infarcted human heart. ’zigzag’ course of activation. Circulation 88(3), 915–926 (1993)

    Article  Google Scholar 

  3. Duckett, S.G., Ginks, M., Shetty, A.K., Knowles, B.R., Totman, J.J., Chiribiri, A., Ma, Y.L., Razavi, R., Schaeffter, T., Carr-White, G., Rhode, K., Rinaldi, C.A.: Realtime fusion of cardiac magnetic resonance imaging and computed tomography venography with x-ray fluoroscopy to aid cardiac resynchronisation therapy implantation in patients with persistent left superior vena cava. Europace (2010)

    Google Scholar 

  4. Botker, H.E., Lassen, J.F., Hermansen, F., Wiggers, H., Sogaard, P., Kim, W.Y., Bottcher, M., Thuesen, L., Pedersen, A.K.: Electromechanical mapping for detection of myocardial viability in patients with ischemic cardiomyopathy. Circulation 103, 1631–1637 (2001)

    Article  Google Scholar 

  5. Camara, O., Oeltze, S., De Craene, M., Sebastian, R., Silva, E., Tamborero, D., Mont, L., Sitges, M., Bijnens, B.H., Frangi, A.F.: Cardiac motion estimation from intracardiac electrical mapping data: Identifying a septal flash in heart failure. In: Ayache, N., Delingette, H., Sermesant, M. (eds.) FIMH 2009. LNCS, vol. 5528, pp. 21–29. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  6. Psaltis, P., Worthley, S.: Endoventricular electromechanical mapping the diagnostic and therapeutic utility of the noga xp cardiac navigation system. Journal of Cardiovascular Translational Research 2, 48–62 (2009)

    Article  Google Scholar 

  7. Ben-Haim, S., Osadchy, D., Schuster, I., Gepstein, L., Hayam, G., Josephson, M.: Nonfluoroscopic, in vivo navigation and mapping technology. Nature Medicine 2(12), 1393–1395 (1996)

    Article  Google Scholar 

  8. Gorcsan, John, I.: Echocardiographic Strain Imaging for Myocardial Viability: An Improvement Over Visual Assessment? Circulation 112(25), 3820–3822 (2005)

    Google Scholar 

  9. Klemm, H., Ventura, R., Franzen, O., Baldus, S., Mortensen, K., Risius, T., Willems, S.: Simultaneous mapping of activation and motion timing in the healthy and chronically ischemic heart. Heart Rhythm 3(7), 781–788 (2006)

    Article  Google Scholar 

  10. Dickfeld, T., Lei, P., Dilsizian, V., Jeudy, J., Dong, J., Voudouris, A., Peters, R., Saba, M., Shekhar, R., Shorofsky, S.: Integration of three-dimensional scar maps for ventricular tachycardia ablation with positron emission tomography-computed tomography. JACC: Cardiovascular Imaging 1(1), 73–82 (2008)

    Google Scholar 

  11. Samady, H., Liu, Y., Choi, C., Ragosta, M., Pfau, S., Cleman, M., Powers, E., Kramer, C., Wackers, F., Beller, G., Watson, D.: Electromechanical mapping for detecting myocardial viability and ischemia in patients with severe ischemic cardiomyopathy. The American Journal of Cardiology 91(7), 807–811 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Porras, A.R. et al. (2011). Cardiac Deformation from Electro-Anatomical Mapping Data: Application to Scar Characterization. In: Metaxas, D.N., Axel, L. (eds) Functional Imaging and Modeling of the Heart. FIMH 2011. Lecture Notes in Computer Science, vol 6666. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21028-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21028-0_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21027-3

  • Online ISBN: 978-3-642-21028-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics