Advertisement

Sensitivity Analysis of Mesh Warping and Subsampling Strategies for Generating Large Scale Electrophysiological Simulation Data

  • Corné Hoogendoorn
  • Ali Pashaei
  • Rafael Sebastian
  • Federico M. Sukno
  • Oscar Cámara
  • Alejandro F. Frangi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6666)

Abstract

The analysis of large-scale simulation data from virtual populations can be effective to gain computational insight into disease mechanisms and treatment strategies, which can serve for generating hypotheses for and focusing subsequent clinical trials. This can be instrumental in shortening the critical path in medical product development and more cost-effective clinical trials. A previously published pipeline established point correspondence among volumetric meshes to enable meaningful statistics on cardiac electrophysiological simulations on the anatomical distribution of a large-scale virtual population. Thin Plate Splines (TPS), derived from surface deformations, were used to warp a template volumetric mesh, removing the costly operation of repeated volumetric meshing from the pipeline, but potentially at the cost of the volumetric mesh quality. In this work we compare (1) the influence of using TPS versus volumetric meshing of deformed surface meshes, and (2) the influence of surface mesh subsampling prior to the TPS computation. Our results suggest that warping of a template volumetric mesh introduces errors in electrophysiological simulation results of around 4 ms, while having computational times per mesh on the order of seconds, at surface subsampling rates of up to 80%.

Keywords

Root Mean Square Cardiac Resynchronization Therapy Surface Mesh Virtual Population Point Distribution Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Yu, C.-M., Fung, J.W.-H., Zhang, Q., Sanderson, J.E.: Understanding nonresponders of cardiac resynchronization therapy – current and future perspectives. J. Cardiovasc. Electrophysiol. 16(10), 1117–1124 (2005)CrossRefGoogle Scholar
  2. 2.
    Hoogendoorn, C., Pashaei, A., Sebastián, R., Sukno, F.M., Cámara, O., Frangi, A.F.: Influence of geometric variations on LV activation times: A study on an atlas-based virtual population. In: Camara, O., Pop, M., Rhode, K., Sermesant, M., Smith, N., Young, A. (eds.) STACOM 2010. LNCS, vol. 6364, pp. 242–251. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  3. 3.
    Bookstein, F.L.: Principal warps: Thin-plate splines and the decomposition of deformations. IEEE Trans. Pattern Anal. Mach. Intell. 11(6), 567–585 (1989)CrossRefMATHGoogle Scholar
  4. 4.
    Lamata, P., Niederer, S., Barber, D., Norsletten, D., Lee, J., Hose, R., Smith, N.: Personalization of cubic hermite meshes for efficient biomechanical simulations. In: Jiang, T., Navab, N., Pluim, J.P.W., Viergever, M.A. (eds.) MICCAI 2010. LNCS, vol. 6362, pp. 380–387. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  5. 5.
    Camara, O., Schweiger, M., Scahill, R.I., Crum, W.R., Sneller, B.I., Schnabel, J.A., Ridgway, G.R., Cash, D.M., Hill, D.L.G., Fox, N.C.: Phenomenological model of diffuse global and regional atrophy using finite-element methods. IEEE Trans. Med. Imaging 25(11), 1417–1430 (2006)CrossRefGoogle Scholar
  6. 6.
    Barber, D.C., Oubel, E., Frangi, A.F., Hose, D.R.: Efficient computational fluid dynamics mesh generation by image registration. Med. Image Anal. 11(6), 648–662 (2007)CrossRefGoogle Scholar
  7. 7.
    Streeter, D.D.: Gross morphology and fiber geometry of the heart. In: Berne, R.M., Sperelakis, N., Geigert, S.R. (eds.) Handbook of Physiology: The Cardiovascular System. The Heart, vol. I, pp. 61–112. American Physiology Society (1979)Google Scholar
  8. 8.
    Caldwell, B.J., Trew, M.L., Sands, G.B., Hooks, D.A., LeGrice, I.J., Smaill, B.H.: Three distinct directions of intramural activation reveal nonuniform side-to-side electrical coupling of ventricular myocytes. Circ. Arrhythm. Electrophysiol. 2(4), 433–440 (2009)CrossRefGoogle Scholar
  9. 9.
    Schroeder, W.J., Zarge, J.A., Lorensen, W.E.: Decimation of triangle meshes. In: Proc. ACM SIGGRAPH, pp. 65–70 (1992)Google Scholar
  10. 10.
    Lindstrom, P.: Out-of-core simplification of large polygonal models. In: Proc. ACM SIGGRAPH, pp. 259–262 (2000)Google Scholar
  11. 11.
    Eldar, Y., Lindenbaum, M., Porat, M., Zeevi, Y.Y.: The farthest point strategy for progressive image sampling. IEEE Trans. Image Process. 6(9), 1305–1315 (1997)CrossRefGoogle Scholar
  12. 12.
    Durrer, D., van Dam, R.T., Freud, G.E., Janse, M.J., Meijler, F.L., Arzbaecher, R.C.: Total excitation of the isolated human heart. Circulation 41(6), 899–912 (1970)CrossRefGoogle Scholar
  13. 13.
    Sethian, J.A.: A fast marching level set method for monotonically advancing fronts. Proc. Natl. Acad. Sci. USA 93(4), 1591–1595 (1996)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Corné Hoogendoorn
    • 1
    • 2
  • Ali Pashaei
    • 1
    • 2
  • Rafael Sebastian
    • 3
  • Federico M. Sukno
    • 1
    • 2
  • Oscar Cámara
    • 1
    • 2
  • Alejandro F. Frangi
    • 1
    • 2
    • 4
  1. 1.Center for Computational Imaging and Simulation Technologies in Biomedicine (CISTIB)Universitat Pompeu FabraBarcelonaSpain
  2. 2.Networking Center on Biomedical Research - CIBER-BBNBarcelonaSpain
  3. 3.Department of Computer ScienceUniversitat de ValenciaValenciaSpain
  4. 4.Institució Catalana de Recerca i Estudis Avançats (ICREA)BarcelonaSpain

Personalised recommendations