Advertisement

Multiview Diffeomorphic Registration for Motion and Strain Estimation from 3D Ultrasound Sequences

  • G. Piella
  • M. De Craene
  • C. Yao
  • G. P. Penney
  • A. F. Frangi
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6666)

Abstract

This paper presents a new registration framework for estimating myocardial motion and strain from multiple views of 3D ultrasound sequences. The originality of our approach resides in the estimation of the transformation directly from the multiple views rather than from a single view or a reconstructed compounded sequence. This allows us to exploit all spatio-temporal information available in the input views avoiding occlusions and image fusion errors that could lead to some inconsistencies in the motion quantification result. In addition, by using the original input images, speckle information (which is an important feature for motion estimation and could be blurred out in the fusion process) should remain consistent between temporal image frames.

We propose a multiview diffeomorphic registration strategy that enforces smoothness and consistency in the spatio-temporal domain by modeling a continuous 3D+t velocity field as a sum of B-spline kernels. This 3D+t continuous representation allows us to robustly cope with variations in heart rate resulting in different number of images acquired per cardiac cycle for different views. The similarity measure is obtained by extension of a pairwise mean square error metric where a weighting scheme balances the contribution of the different views.

We have carried out experiments on synthetic 3D ultrasound images with known ground truth and on in-vivo multiview 3D data sets of two volunteers. It is shown that the inclusion of several views improves the consistency of the strain curves and reduces the number of segments where a non-physiological strain pattern is observed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Grau, V., Becher, H., Noble, J.A.: Registration of multiview real-time 3-D echocardiographic sequences. IEEE Trans. Med. Imag. 26(9), 1154–1165 (2007)CrossRefGoogle Scholar
  2. 2.
    Wachinger, C., Wein, W., Navab, N.: Registration strategies and similarity measures for 3D ultrasound mosaicing. Acad. Radiol. 15(11), 1404–1415 (2008)CrossRefGoogle Scholar
  3. 3.
    Yao, C., Simpson, J.M., Jansen, C.H.P., King, A.P., Penney, G.P.: Spatial compounding of large sets of 3D echocardiography images. In: Proc. of SPIE (2009)Google Scholar
  4. 4.
    Rajpoot, K., Noble, J.A., Grau, V., Szmigielski, C., Becher, H.: Multiview RT3D echocardiography image fusion. In: Ayache, N., Delingette, H., Sermesant, M. (eds.) FIMH 2009. LNCS, vol. 5528, pp. 134–143. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  5. 5.
    Grau, V., Szmigielski, C., Becher, H., Noble, J.A.: Combining apical and parasternal views to improve motion estimation in real-time 3D echocardiographic sequences. In: Proc. of ISBI, pp. 516–519 (2008)Google Scholar
  6. 6.
    Shi, P., Sinusas, A.J., Constable, R.T., Duncan, J.S.: Volumetric deformation analysis using mechanics-based data fusion. Int. J. Comput. Vis. 35(1), 87–107 (1999)CrossRefGoogle Scholar
  7. 7.
    Duchateau, N., De Craene, M., Silva, E., Sitges, M., Bijnens, B.H., Frangi, A.F.: Septal flash assessment on CRT candidates based on statistical atlases of motion. In: Yang, G.-Z., Hawkes, D., Rueckert, D., Noble, A., Taylor, C. (eds.) MICCAI 2009. LNCS, vol. 5762, pp. 759–766. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  8. 8.
    De Craene, M., Piella, G., Duchateau, N., Silva, E., Doltra, A., Gao, H., et al.: Temporal diffeomorphic free-form deformation for strain quantification in 3D-US images. In: Jiang, T., Navab, N., Pluim, J.P.W., Viergever, M.A. (eds.) MICCAI 2010. LNCS, vol. 6362, pp. 1–8. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  9. 9.
    Elen, A., Choi, H., Loeckx, D., Gao, H., Claus, P., Suetens, P., et al.: Three-dimensional cardiac strain estimation using spatio-temporal elastic registration of US images: a feasibility study. IEEE Trans. Med. Imag. 27(11), 1580–1591 (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • G. Piella
    • 1
    • 2
  • M. De Craene
    • 1
    • 2
  • C. Yao
    • 3
  • G. P. Penney
    • 3
  • A. F. Frangi
    • 1
    • 2
    • 4
  1. 1.CISTIBUniversitat Pompeu FabraBarcelonaSpain
  2. 2.CIBER-BBNSpain
  3. 3.Division of Imaging SciencesKing’s College LondonUK
  4. 4.Catalan Institution for Research and Advanced Studies (ICREA)Spain

Personalised recommendations