Advertisement

Order Statistic Based Cardiac Boundary Detection in 3D+t Echocardiograms

  • C. Butakoff
  • F. Sukno
  • A. Doltra
  • E. Silva
  • M. Sitges
  • A. F. Frangi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6666)

Abstract

We propose a boundary detector for echocardiographic images to be used in conjunction with deformable models. It is well suited to detect endocardial and epicardial boundaries in both 2D and 3D images. We demonstrate its capabilities on an example of Active Shape Models, where it is used as a force driving the mesh towards the cardiac walls. Although the proposed approach is mostly specific to echocardiography, it does not require any training to learn the image appearance (since construction of a training set of echocardiograms is very difficult and error prone). The detector is based on computing the medians of a series of neighborhoods and analyzing the change in their values to look for the evidence of an edge. The proposed algorithm was tested on thirty 3D echocardiographic sequences (corresponding to 10 healthy and 10 dyssinchronous hearts, the latter imaged at two stages of cardiac resynchronization therapy: before and at twelve month followup).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Heimann, T., Meinzer, H.P.: Statistical shape models for 3D medical image segmentation: A review. Med. Image Anal. 13(4), 543–563 (2009)CrossRefGoogle Scholar
  2. 2.
    Noble, J.A., Boukerroui, D.: Ultrasound image segmentation: a survey. IEEE Trans. Med. Imag. 25(8), 987–1010 (2006)CrossRefGoogle Scholar
  3. 3.
    Frangi, A.F., et al.: A survey of three-dimensional modeling techniques for quantitative functional analysis of cardiac images. In: Advanced Image Processing in Magnetic Resonance Imaging, CRC Press, Boca Raton (2005)Google Scholar
  4. 4.
    Lelieveldt, B.P.F., et al.: 3D active shape and appearance models in medical image analysis. In: Handbook of Mathematical Models of Computer Vision, pp. 471–486. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  5. 5.
    Angelini, E.D., et al.: Segmentation of real-time three-dimensional ultrasound for quantification of ventricular function: A clinical study on right and left ventricles. Ultrasound Med. Biol. 31(9), 1143–1158 (2005)CrossRefGoogle Scholar
  6. 6.
    Angelini, E.D., et al.: State-of-the-art of levelset methods in segmentation and registration of medical imaging modalities. In: Handbook of Biomedical Image Analysis, vol. 3, Kluwer Academic Publishers, Dordrecht (2005)Google Scholar
  7. 7.
    Sugeng, L., et al.: Quantitative assessment of left ventricular size and function: side-by-side comparison of real-time three-dimensional echocardiography and computed tomography with magnetic resonance reference. Circulation 114(7), 654–661 (2006)CrossRefGoogle Scholar
  8. 8.
    Hansegård, J., et al.: Constrained active appearance models for segmentation of triplane echocardiograms. IEEE Trans. Med. Imag. 26(10), 1391–1400 (2007)CrossRefGoogle Scholar
  9. 9.
    Bovik, A.C., Munson, D.C.: Edge detection using median comparisons. Comput. Vis. Image Understand. 33(3), 377–389 (1986)Google Scholar
  10. 10.
    Czerwinski, R.N., et al.: Detection of lines and boundaries in speckle images-application to medical ultrasound. IEEE Trans. Med. Imag. 18(2), 126–136 (1999)CrossRefGoogle Scholar
  11. 11.
    Slabaugh, G., et al.: Information-theoretic feature detection in ultrasound images. In: Proc. EMBS, pp. 2638–2642 (2006)Google Scholar
  12. 12.
    Cootes, T., Taylor, C.: Active shape models – smart snakes. In: Proc. BMVC, pp. 266–275 (1992)Google Scholar
  13. 13.
    Ordas, S., et al.: A statistical shape model of the heart and its application to model-based segmentation. In: Proc. SPIE, vol. 6511 (2007)Google Scholar
  14. 14.
    Frigge, M., et al.: Some implementations of the boxplot. American Statistician 43(1), 50–54 (1989)Google Scholar
  15. 15.
    Zagrodsky, V., et al.: Registration-assisted segmentation of real-time 3-D echocardiographic data using deformable models. IEEE Trans. Med. Imag. 24(9), 1089–1099 (2005)CrossRefGoogle Scholar
  16. 16.
    Corsi, C., et al.: Left ventricular volume estimation for real-time three-dimensional echocardiography. IEEE Trans. Med. Imag. 21(9), 1202–1208 (2002)CrossRefGoogle Scholar
  17. 17.
    Yang, L., et al.: 3D ultrasound tracking of the left ventricle using one-step forward prediction and data fusion of collaborative trackers. In: Proc. CVPR, pp. 1–8 (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • C. Butakoff
    • 1
    • 2
  • F. Sukno
    • 1
  • A. Doltra
    • 3
  • E. Silva
    • 3
  • M. Sitges
    • 3
  • A. F. Frangi
    • 1
    • 2
    • 4
  1. 1.CISTIBUniversitat Pompeu FabraBarcelonaSpain
  2. 2.CIBER-BBNSpain
  3. 3.Hospital Clínic, IDIBAPSUniversitat de BarcelonaSpain
  4. 4.Institució Catalana de Recerca i Estudis AvançatsBarcelonaSpain

Personalised recommendations