Cardiac Motion Estimation from 3D Echocardiography with Spatiotemporal Regularization

  • Zhijun Zhang
  • Xubo Song
  • David J. Sahn
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6666)


Cardiac deformation and motion analysis is important for studying heart function and mechanics. Deformation and motion abnormality of the myocardial wall is usually associated with ischemia and infarct. Three-dimensional (3D) echocardiographic (echo) imaging is the most widely used method to estimate cardiac motion. However, quantitative motion analysis from echo images is still a challenging problem due to the complexity of cardiac motion, limitations in spatial and temporal resolutions, low signal noise ratio and imaging artifacts such as signal dropout. We developed a novel method to quantitatively analyze cardiac deformation and motion from echo sequences. Our estimated cardiac motion is not only regularized to be spatially but also temporally smooth. We validate our methods using (1) simulated echo images with known ground truth, and (2) in vivo echo images acquired on open-chests pigs with sonomicrometry. Tests indicate that our method can estimate cardiac motion more accurately than methods without temporal regularization.


Cardiac motion analysis nonrigid image registration echocardiography cardiac strain estimation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Fukuda, K., Oki, T., Tabata, T., Iuchi, A., Ito, S.: Regional left ventricular wall motion abnormalities in myocardial infarction and mitral annular descent velocities studied with pulsed tissue Doppler imaging. JASE 11(9), 841–848 (1998)Google Scholar
  2. 2.
    Hung, J., Lang, R., Flachskampf, F., Shernan, S.K., McCulloch, M.L., Adams, D.B., Thomas, J., Vannan, M., Ryan, T.: 3D Echocardiograhy: A Review of the Current Status and Future Directions. JASE 20(3), 213–233 (2007)Google Scholar
  3. 3.
    McInerney, T., Terzopoulos, D.: Deformable Models in Medical Image Analysis: A Survery. Med. Imag. Anal. 1(2), 91–108 (1996)CrossRefGoogle Scholar
  4. 4.
    Frangi, A.F., Niessen, W.J., Viergever, M.A.: Three Dimensional Modeling for Functional Analysis of Cardiac Images: A Review. IEEE Trans. Med. Imag. 20(1), 2–25 (2001)CrossRefGoogle Scholar
  5. 5.
    Papademetris, X., Sinusas, A.J., Dione, D.P., Duncan, J.S.: Estimation of 3D left ventricular deformation from echocardiography. Med. Imag. Anal. 5(1), 17–28 (2001)CrossRefGoogle Scholar
  6. 6.
    Wang, Y., Georgescu, B., Houle, H., Comaniciu, D.: Volumetric Myocardial Mechanics from 3D+t Ultrasound Data with Multi-model Tracking. In: Camara, O., Pop, M., Rhode, K., Sermesant, M., Smith, N., Young, A. (eds.) STACOM 2010. LNCS, vol. 6364, pp. 184–193. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  7. 7.
    Meunier, J.: Tissue motion assessment from 3D echographic speckle tracking. Phys. Med. Biol. 43, 1241–1254 (1998)CrossRefGoogle Scholar
  8. 8.
    Comaniciu, D., Zhou, X., Krishnan, S.: Robust real-time tracking of myocardial border: An information fusion approach. IEEE Trans. Med. Imag. 23(7), 849–860 (2004)CrossRefGoogle Scholar
  9. 9.
    Makela, T., Clarysse, P., Sipila, O., Pauna, N., Pham, Q.C., Katila, T., Magnin, I.E.: A review of cardiac image registration methods. IEEE Trans. Med. Imag. 21(9), 1011–1021 (2002)CrossRefGoogle Scholar
  10. 10.
    Suhling, M., Arigovindan, M., Jansen, C., Hunziker, P., Unser, M.: Myocardial Motion Analysis from B-Mode Echocardiograms. IEEE Trans. Image Process. 14(4), 525–536 (2005)CrossRefGoogle Scholar
  11. 11.
    Elen, A., Choi, H.F., Loeckx, D., Gaom, H., Claus, P., Suetens, P., Maes, F., D’hooge, J.: Three-dimensional cardiac strain estimation using spatio-temporal elastic registration of ultrasound images: a feasibility study. IEEE Trans. Med. Imag. 27(11), 1580–1591 (2008)CrossRefGoogle Scholar
  12. 12.
    Myronenko, A., Song, X.B., David, J.S.: LV Motion Tracking from 3D Echocardiography Using Textural and Structural Information. In: Ayache, N., Ourselin, S., Maeder, A. (eds.) MICCAI 2007, Part II. LNCS, vol. 4792, pp. 428–435. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  13. 13.
    Ledesma-Carbayo, M.J., Mah-Casado, P., Santos, A., Prez-David, E., GarMA, D.M.: Spatio-Temporal Nonrigid Registration for Ultrasound Cardiac Motion Estimation. IEEE Trans. Med. Imag. 24(9), 1113–1126 (2005)CrossRefGoogle Scholar
  14. 14.
    Maes, F., Collignon, A., Vandermeulen, D., Marchal, G., Suetens, P.: Multimodal image registration by maximization of mutual information. IEEE Trans. Med. Imag. 16(2), 187–198 (1997)CrossRefGoogle Scholar
  15. 15.
    Craene, M.D., Camara, O., Bijnens, B.H., Frangi, A.F.: Temporal Diffeomorphic Free-Form Deformation for Strain Quantification in 3D-US Images. In: Jiang, T., Navab, N., Pluim, J.P.W., Viergever, M.A. (eds.) MICCAI 2010. LNCS, vol. 6362, pp. 1–8. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  16. 16.
    Hermosillo, G., Chefd’Hotel, C., Faugeras, O.: Variational Methods for Multimodal Image Matching. International Journal of Computer Vision 50(2), 329–343 (2002)zbMATHCrossRefGoogle Scholar
  17. 17.
    Rueckert, D., Sonoda, L.I., Hayes, C., Hill, D.L.G., Leach, M.O., Hawkes, D.J.: Nonrigid registration using free-form deformations: Application to breast MR images. IEEE Trans. Image Process. 18(8), 712–721 (1999)CrossRefGoogle Scholar
  18. 18.
    MATLAB version 7.11.0 (R2010b). The MathWorks Inc., Natick (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Zhijun Zhang
    • 1
  • Xubo Song
    • 1
  • David J. Sahn
    • 1
    • 2
  1. 1.Department of Biomedical EngineeringOregon Health and Science UniversityBeavertonUSA
  2. 2.Department of Pediatric CardiologyOregon Health and Science UniversityBeavertonUSA

Personalised recommendations