Advertisement

A Hybrid Method for Automatic Anatomical Variant Detection and Segmentation

  • Raghed Hanna
  • Hans Barschdorf
  • Tobias Klinder
  • Frank M. Weber
  • Martin W. Krueger
  • Olaf Dössel
  • Cristian Lorenz
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6666)

Abstract

The delineation of anatomical structures in medical images can be achieved in an efficient and robust manner using statistical anatomical organ models, which has been demonstrated for an already considerable set of organs, including the heart. While it is possible to provide models with sufficient shape variability to cope, to a large extent, with inter-patient variability, as long as object topology is conserved, it is a fundamental problem to cope with topological organ variability. We address this by creating a set of model variants and selecting the most appropriate model variant for the patient at hand. We propose a hybrid method combining model-based image analysis with a guided region growing approach for automated anatomical variant selection and apply it to the left atrium in cardiac CT images. Concerning the human heart, the left atrium is the most variable sub-structure with a variable number of pulmonary veins draining into it. It is of large clinical interest in the context of atrial fibrillation and related interventions.

Keywords

Pulmonary Vein Left Atrium Label Image Pulmonary Vein Ostium Left Pulmonary Vein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kainmüller, D., Lange, T., Lamecker, H.: Shape constrained automatic segmentation of the liver based on a heuristic intensity model. In: Proc. MICCAI Workshop 3D Segmentation in the Clinic: A Grand Challenge, pp. 109–116 (2007)Google Scholar
  2. 2.
    Marom, E., Herndon, J., Kim, Y., McAdams, H.: Variations in pulmonary venous drainage to the left atrium: implications for radiofrequency ablation. Radiology 230, 824–829 (2004)CrossRefGoogle Scholar
  3. 3.
    Ecabert, O., Peters, J., Schramm, H., Lorenz, C., von Berg, J., Walker, M., Vembar, M., Olszewski, M., Subramanyan, K., Lavi, G., Weese, J.: Automatic model-based segmentation of the heart in ct images. IEEE Transactions on Medical Imaging 27(9), 1189–1201 (2008)CrossRefGoogle Scholar
  4. 4.
    Delingette, H.: General object reconstruction based on simplex meshes. International Journal of Computer Vision 32, 111–146 (1999)CrossRefGoogle Scholar
  5. 5.
    Kohlberger, T., Uzunbas, M.G., Alvino, C.V., Kadir, T., Slosman, D.O., Funka-Lea, G.: Organ segmentation with level sets using local shape and appearance priors. In: Yang, G.-Z., Hawkes, D., Rueckert, D., Noble, A., Taylor, C. (eds.) MICCAI 2009. LNCS, vol. 5762, pp. 34–42. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  6. 6.
    Klein, S., van der Heide, U.A., Raaymakers, B.W., Kotte, A.N.T.J., Staring, M., Pluim, J.P.W.: Segmentation of the prostate in mr images by atlas matching. In: ISBI, pp. 1300–1303 (2007)Google Scholar
  7. 7.
    Blaffert, T., Barschdorf, H., von Berg, J., Dries, S., Franz, A., Klinder, T., Lorenz, C., Renisch, S., Wiemker, R.: Lung lobe modeling and segmentation with individualized surface meshes. In: SPIE, vol. 6914, 69141I (2008)Google Scholar
  8. 8.
    Lorensen, W., Cline, H.: Marching cubes: A high resolution 3d surface construction algorithm. Computer Graphics 21, 163–169 (1987)CrossRefGoogle Scholar
  9. 9.
    Ballard, D.H.: Generalizing the hough transform to detect arbitrary shapes. Pattern Recognition 13(2), 111–122 (1981)CrossRefzbMATHGoogle Scholar
  10. 10.
    Weese, J., Kaus, M.R., Lorenz, C., Lobregt, S., Truyen, R., Pekar, V.: Shape constrained deformable models for 3D medical image segmentation. In: Insana, M.F., Leahy, R.M. (eds.) IPMI 2001. LNCS, vol. 2082, pp. 380–387. Springer, Heidelberg (2001)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Raghed Hanna
    • 1
    • 2
  • Hans Barschdorf
    • 2
  • Tobias Klinder
    • 3
  • Frank M. Weber
    • 1
  • Martin W. Krueger
    • 1
  • Olaf Dössel
    • 1
  • Cristian Lorenz
    • 2
  1. 1.Institute of Biomedical EngineeringKarlsruhe Institute of Technology (KIT)Germany
  2. 2.Philips Research HamburgGermany
  3. 3.Philips Research North AmericaUK

Personalised recommendations